- CHAPTER 6

TANBUG
V2

Notes for Users Familiar with TANBUG V1

TANBUG version 2 has been designed such that all your programs
written under TANBUG V1 will run identically under TANBUG
V2. TANBUG V2, which occupies 2K instead of TANBUG Vlis

1K, contains extra features as follows:

Basic Warm Start

Parallel Printer Driver

Serial Printer Driver

Link to External (user) Software Driver

#5232 Input to the Monitor

Additional Subroutines, Including Memory Management

Basic Clear Screen

TANBUG V2 1is compatible with Microsoft Basic V1 and XBUG
V5. However, XBUG V5 Translator format was specifically
designed for screen output and gives an overprinted format.
The best method of obtaining a listing is to use the Insiruction
dissassembler to 1list code in memory. Later versions of XBUG

will have this problem rectified.

The TANBUG monitor program is located in 2K bytes of read
only memory (ROM) at the top of the address space 1i.,e.
pages 248 - 255. It contains facilities to enter, modify, run
and debug programs. This chapter of the manual gives full
details of the command facilities and subroutines available

to the user,

TANBUG will only operate in the memory map of the Microtan
system, it is not a general purpose 6502 software package
and has been specifically written for Microtan. Locations
¥7¥7, F7F8 and FJF9 are reserved for a jump to an expansion
monitor ROM which is positioned on the expansion board,

more about this later.

Locations 2@f-3FF i.e. pages 2 and 3 are the visual display
memory - TANBUG writes to these locations whenever a command
ls typed to the monitor. Locations BFF@-BFF3 are the addresses
of the peripheral attachments, e.g: keyboard, graphics function
flip-flop etc. Locations 1@¢-1FF 1i.e. page 1, are used as
the stack by the microprocessor. Since the stack is of the
push down variety it follows that the whole of the area will
not be wused as stack storage in the majority of programs,
TANBUG requires to wuse locations 1FP-IFF as stack storage
(only 16 locations). The rest of this area is free for user
programs. Locations 4f-FF are also available as user RAM,
the preceeding locations @-3F being reserved for use by TANBUG.
User programs which do not wuse the stack may therefore
be loaded anywhere i.e. the area 4@-1EF. For user programs
which do use the stack, the user must calculate how many

stack locations are required and reduce the upper limit accord-

ingly.

6-3

TANBUG contains coding to automatically identify whether
the keypad or full ASCII keyboard is connected to the keyboard
socket. This coding is executed every time a reset is issued,
and thereafter a sequence of code, particular to the keyboard
type in use, 1is executed. Reset must therefore always be

issued after changing the keyboard type.

When wusing an ASCIl1 encoded alphanumeric keyboard, monitor
commands are typed in as shown in this chapter. There is
however no reset key on an ASCI1 keyboard, one must be
fitted as shown in the chapter describing assembly of the
Microtan kit. TANBUG drives this type of keyboard in the

interrupt mode.

The keypad 1is wused somewhat differently, its layout being

shown below.

DEL SP
SHIFT LF CR RST.

M G S N
C D E F
P ESC B L
8 9 A B

0 C R
4 5 6 7
0 1 2 3

TANBUG interrogates the keypad for a depressed key, then
translates the matrix encoded signal into an ASCI1 character
which it puts up on the visual display just as if the equivalent
key were depressed on an ASCIl encoded keyboard. Because
of the limited number of keys it has been necessary to incor—
porate a shift function on the keypad. So to obtain the character
P for example, the user presses and releases SHIFT, then

depresses and releases P.

The SHIFT key contains a self cancelling facility - if the
user presses SHIFT twice in succession the pending shift
operation is cancelled. So as an example, using the two
keys SHIFT and 8, the operation SHIFT P vyields P on the
display. SHIFT SHIFT P yields 8 on the display. Other special
purpose keys on the keypad are RST, which issues a reset
to the Microtan, and DEL which delete the last character
typed. Repeated deletes erase characters back to the beginning

of the line.

Keyboard Protocol

If you have a serial KB enabled, the system disables the
keypad at startup, 1i.e. you cannot use it (the keypad) at
all.

If a serial KB is disabled, then the system looks for the
two types of keyboard as before. (ASCI1 keyboard and keypad).
If you are wusing the serial KB and have an ASClI KB plugged
in, the serial KB is disabled as scon as you hit a key on
the ASCII.KB!

From now on in this chapter, the Microtan will be treated
as having one type of keyboard only, since all functions
required can be derived by depressing the appropriate key

or keys on whichever is used - keyboard or keypad.

Having described some of the background to TANBUG, it is
now possible to describe the commands and syntax of TANBUG
i.e. how to use it., An example is shown later on. All numerical
values of address, data and monitor command arguments
are in hexadecimal. The symbol < CR> means on depression
of the carriage return key, <SP> the space key or bar,
< ESC > the escape key (ALT on some keyboards}) and <LF>
line feed. 1In all examples, text to be typed by the user
will be underlined, while TANBUG responses will not. I indicates
the cursor. <ADDR> means a hexadecimal address, ARG .
means hexadecimal data and <TERM> means one of the terminators
<CR> , <5P> , <E8C>» , or <LF>

1 = See Appendix,

6-5

All commands are of the form

<COMMAND> <TERM>

or < COMMAND> <ARG> <TERM>
or < COMMAND> <ARG>, <ARG><TERM>
or < COMMAND> <ARG>, <ARG>, <ARG><TERM>

where <COMMAND> 1is one of the mnemonic commands and <ARG>
is a hexadecimal arugmenf application to the command being
used. The requirement argument is defined for each command.
It should be noted at an early stage that the longest argument
will contain 4 hexadecimal characters. If more are typed all
but the last 4 are ignored. As an example consider the memory
modify command MI12340978 <CR>. In this case location @878
will be modified or examined as all but the last 4 characters

are ignored.

<TERM > 1is one of the terminatiﬁg characters <CR>, <SP>,
<LF> or <ESC>. In fact TANBUG accepts any of the "control"
characters (HEX code @-28) as terminator. TANBUG will reply

with a ? if an illegal command is encountered.

Starting the Monitor TANBUG:

Press the RST key on the- keypad or the reset key or button
connected to the Microtan. TANBUG will scroll the display

and respond with

TANBUG
||

On a system rack Micron, a reset is automatically executed
on power-up. Note: that on initial power up the top part
of the display will be filled with spurious characters. These
will disappear as new commands are entered and the display
scrolls up. On subsequent resets the previous operations remain
displayed to facilitate debugging. Note: that if your Micron
is not fitted with the lower case option, then your prompt
will be a ? and not the block K.

Memory Modify/Examine Command M:

The M command allows the user to enter and modify programs
by changing the RAM 1locations to the desired values. The
command also allows the user to inspect ROM locations, modify
registers etc. To open a location, type the following
M <ADDR> <TERM>
TANBUG then replies with the current contents of that location.
For example to examine the contents of RAM location 1¢¢
type M1@@<CZ> TANBUG then responds on the display with
M1gp, o, N

assuming the current contents of the location were @E.

There are now several options open to the user., 1f any termi-

“is closed and not altered and

nator 1is typed the location
the cursor moves to the next line scrolling up the display
by one row. 1f, however, a value is typed followed by one
of the terminators <CR>, <LF> or <ESC?> the location is modified
and then closed. For example using <CR>

M10, 7, FF

||
location 1@ will now contain FF. If however <SP> is typed,
the location is re-opened and unmodified.

M10, 0E , FF

M@106,9E 1
This facility is wuseful if an erroneous value has been typed.
The terminators <LF> and <ESC> modify the current location
being examined, then opens the next and previous locations
respectively i.e. using <LF>

M198,0E, FF

M@101,AB,H
and using <ESC>

Migg,gE,

Mo@FF, 56,0
Using <LF > makes for very easy program entry, it only being
necessary to type the initial address of the program followed
by its data and <LF?>, then responding to the cursor prompt

for subsequent data words.

Note: that locations IFE and 1FF should not be modified. These
are the stack loctions which contain the monitor return
addresses. If they are corrupted TANBUG will almost certainly
"crash" and it will be necessary to issue a reset in order to

recover.,

The Modify memory command only accepts one byte of information
at a time, while programming convention dictates that all bytes
of an instruction are written on one line. For example, a pro-

gram may be printed as

PLE@ ASPP LDAKS
@102 8548 STA 4P

This wouldrbe entered via TANBUG as

M10@,8E,A9<LF> (First byte of first instruction)
M1#1,FF,38<LF> (Second byte of first instruction)
M1@2,AB,85<LF> (First byte of next instruction)
M183,88,48<LF> (etc.)

List Comgand L:

The list command allows the user to list out sections of ‘memory
onto the display. It 1is possible to display the contents of a
maximum of one hundred and twenty consecutive memory loca-
tions simultaneously. To list a series of locations type
L <ADDR>, <NUMBER> <TERM>

where ADDR is the address of the first location to be printed
and NUMBER 1is the number of lines of eight consecutive loca-
tions to be printed. TANBUG pauses briefly between each line
to allow the user to scan them. For example, to list the first
16 locations of TANBUG (which resides at F8@@-FFFF) type
LF88@,2<CR>. The display will then be

LF898,2 |
F8g@ 4C 51 F9 4C B2 F9 4C 9B
F8@8 F9 4C 79 FE A9 @D 4C 75
i

If zero lines are requested (i.e. <NUMBER> = @) then 256 lines
will be given.

6-8

Go Command G:

Having entered a program using the M command and verified
it using the L command, the user can use the G command
to start running his own program. The command is of the
‘for'mat G <ADDR> <TERM>. For example, to start a program
whose first instruction 1is at location 108 type Glgg <CR>.
When the wuser program is started the cursor disappears.
On a return to the monitor it re-appears.

The G command automatically sets up two of the microprocessors

internal registers

a) The program counter (PC) is set to the start

address given in the G command.
b) The stack pointer (SP) is set to location 1FF.

The contents of the oti\ler four internal registers, namely
the status word (PSW)}, index X (IX), index Y (1Y) and accumu-
lator (A), are taken from the monitor pseudo registers (described
next). Thus the user can either set up the pseudo registers
before typing the G command, or wuse instructions within

his/her program to manipulate them directly.

Register Modify/examine Command R:

Locations 15 to 1B within the RAM reserved for TANBUG are
the wuser pseudo registers. The user can set these locations
prior to issuing a G command. The values are then transferred
to the microprocessors internal registers immediately before
the wuser program is started. The pseudo register locations
are also used by the monitor to save the user internal register
values when a breakpoint is encountered. These values are
then transferred back into the microprocessor when a P command
is issued, so that to all intents and purposes the user program

appears to be uninterrupted.

6-9

The R command allows the wuser to modify these registers
in conjunction with the M command. To modify/examine registers
type R <CR > and the following display will appear (location
15 containing @@ say).

R
Megs, 00,1

Now proceed as for the M command.

Naturally the M command could be wused to modify/examine
location 15 without wusing the R command -~ the R command
merely saving the user the need to remember and type in
the start location of the pseudo registers. Pseudo register

locations are as follows,

Location Function
15 Low order byte of program counter (PCL)
16 High order byte of program count (PCH)
17 Processor status word (PSW)
18 © Stack pointer {(SP)
19 Index X (IX)
1A Index Y (1Y)
1B Accumulator (A)

Two typical instances of the use of the R command are:-

a) Setting up PSW, 1X, 1Y and A before starting a user

program.

b) Modifying registers after a breakpoint but before
proceeding with program execution (using the

P command) for debugging purposes.

Note that when modifying registers in case (b) care
must be taken if PCL, PCH or SP are modified, since
the proceed command P uses these to determine the
address of the next instructions to be executed (PCL,
PCH) and the user stack pointer (SP).

6-10

Single lInstruction Mode S

Single instruction mode is a very powerful debugging aid.
When set TANBUG executes the wuser program one instruction
at a time, re-entering the monitor between each instruction
and printing out the status of all of the microprocessor's
internal registers as they were after the last instruction
executed in the user program. The S command is used in
conjunction with the proceed command P and the normal mode
command N. Examples are given 1in the description of the

P command.

Normal Mode Command N:

The N command is the complement of the S command and is
used to cancel the S command so that the microprocessor
executes the wuser program in the normal manner without
returning to the monitor between each instruction. Reset automa-

tically sets the normal mode of operation.

Proceed Command P:

The P command is wused to instruct TANBUG to execute the
next instruction in the user program when in single instruction
mode., Pseudo register contents are transferred into the micro-
processor's internal registers and the next instruction in
the user's program is exe cuted. The monitor is then re-entered.
P may also be wused with an argument thus P <NUMBER>
<CR > where NUMBER is less than or equal to FF. In this
case the program executes the specified number of instructions

+1 before returning to the monitor,

Each time the monitor is re-entered after execution of an
instruction or instructions, the status of the microprocessor
internal registers, as they were in the user program, are

printed across the screen in the following order:

6-11

Address of next instruction to be executed.
Processor status word.

Stack pointer.

Index register X.

Index register Y.

Accumulator.

Note that these are in the same order as the

pseudo registers, described earlier.

Whenever the user program is entered, the cursor is removed
from the display. Whenever the monitor is entered, the
cursor returns to the display as a user prompt. While in
the monitor between user instructions, any monitor command
can be typed. A program must always be started by the
G command, then P wused if 1in single instruction mode. A
P command used before a G command is issued, is likely

to cause a program ''crash"” and should not be attempted.

As an example, consider the simple program which repeatedly

adds 1 to the accumulator.

Address Data Mnemonic Comment

198 6 ADC 1 : add 1 to acc.
191 g1

102 4C JMP 100 -

133 o9

184 @1

Set the single instruction mode and start the program. The
user may wish to initially set the accumulator to @@ by

using the M command.

s
G1ap
102 26 FF 96 g1

TANBUG then responds with the characters shown above.

6-12

@132 is the address of the next instruction to

be executed.
20 is the processor status word value.
 FF is the low byte value of the stack pointer.

The high byte 1is always set to 1, the stack

is therefore pointing atlacation 1FF.

) is the value of the index X register.
%) is the value of the index Y register.
g1 is the value of the accumulator. It is a

1 as 1 has been added to the accumulator
and it is assumed that the user cleared

the accumulator before starting the program.

Since the cursor has re-appeared, TANBUG is ready for
any monitor command. For example, registers or memory
locations can be modified, or the program may be re-started
from scratch by typing G188 <CR* again. If the user wishes
to continue then type P <CR>., The resulting display is

El

G1g

pig2 20 FF 06 08 @1
P

PP 20 FF 08 98 H
|

Since the instruction at location 192 was "jump to 1§@",
the status print out shows that this has 1indeed occurred.
Registers, since they were not modified by any program
instruction, remain unchanged. To proceed further type

P <CR> again.

6-13

S

G1¢8

gig2 26 FF 99 09 @i
P

g108 20 FF g8 @9 @1
P

gig2 26 FF 00 0 @2
| |

The add instruction has been executed again, so the accumulator
has incremented by 1 to become 2. Now typing P4 <CR>
gives a display.

s
G198
gig2 20 FF 98 98 @1
P

glgp 208 FF @8 @9 01
P

gig2 28 FF 98 @8 @2
P4

pgi1g2 28 FF @9 08 ¢4
n

TANBUG allowed execution of 4 instructions before again
returning to the monitor. The 4 instructions were 2 add
instructions and 2 jump instructions thus giving the accumulator

the value 4.

By typing N<CR > then P <CR> removes the single instruction
mode émd causes the program to proceed. It now does not
return to the monitor but continues to race around this
small program loop continually adding and jumping back.
There is no way to exit from this trivial program except
by a microprocessor reset or, if using an alphanumeric

keyboard, by typing ESC.

6-14

It can be seen that the S and P commands are particularly
useful when tracing a program which contains instructions
that transfer program control e.g. jumps, Dbranches and
sub-routines, since these commands allow the user to interrogate

the order of execution of his/her program.

Breakpoint Command B;

A breakpoint 1is a complementary debugging aid to single
instruction mode. Instead of stepping singly through all
instructions in a program, the breakpoint facility allows
the ‘user to specify the address at which he requires the
monitor to be re-entered from his/her program. As an example,
consider a long program in which a fault is suspected to
exist near the end. 1t would be very tedious and time
consuming to single step through the program to the problem
area. A breakpoint can be set just previous to where the
fault 1is suspected to exist and the program started with
the G command. Normal execution occurs until the breakpoint
is reached, then the monitor is re-entered with the same
status print-out as for single instruction mode. Any monitor

commands can then be used and the program continued.
The format of the breakpoint command is
B <ADDR>, <NUMBER> <CR»>
where <ADDR> is the address of any instruction OPCODE
(but not argument), <NUMBER> is any number from § - 7

defining one of 8 breakpoints., B <CR> removes all breakpoints.

As an example consider the following program

166 E8 LCOP: INX
191 C8 INY
192 65 g1 ADC#1

184 4C @8 @1 JMP LOOP

6-15

Firstly set index X, index Y and the accumulator to #g
using the R command. To set breakpoint @ at the jump instruc-
tion and start the program type BI184,8 <CR> . The display
will then be

B194,8
G104
gigs 20 FF @1 @1 #1

The jump instruction was reached and the breakpoint re-
directed control. back to TANBUG. 1f it were required, single
instruction mode could be set for further debugging. However,
assume that we wish to execute the loop again by typing

P<CR>.

B1g4,8

G198 :
plg2 26 FF ¢l @1 gl
P

pigL 20 FF @2 @2 @2
|

The proceed command P has gone once through the breakpoint
and then re-entered the monitor. 1f P <NUMBER > <CR> was
typed it would have proceeded through the breakpoint
<NUMBER > times.

Up to 8 breakpoints can be set at 8 different locations.
The B <CR> command removes all breakpoints. A single
breakpoint can be removed by setting its address to #.
For example, imagine a breakpoint is. set as follows: Bigz,2,
and it is subsequently wished to remove it but leave any

others unaltered; type B@,2<CR> to remove it.

Caution. The breakpeint system works by replacing the
user's instruction with a special instruction (BRK) whose

opcode is @f. Replacement is carried out when G or P is: typed.

6-16

On return to the monitor the original opcode is replaced.
1t is therefore possible to corrupt the user program under
some circumstances. The following points should therefore

he observed:

a) Breakpoints must only be set at the opcode part

of a user instruction and nowhere else.

b} 1f the wuser program utilises the BRK instruction
as part of the wuser code, then the wuser must
have his own special interrupt routine and cannot

use breakpoints.

c) If breakpoints are set in the user program and
a reset is 1issued while the microprocessor is
executing the user program rather than the monitor,
the breakpoints are lost and those locations
at which breakpoints were set in the user program
will be corrupted. These locations must be re-
entered wusing the M command before restarting

the user program.

d) Setting more than one Dbreakpoint at the same

address causes the user program to be corrupted.

e) To wuse breakpoints, the user must not have
modified the interrupt link, 1i.e. the interrupt
code within TANBUG must be executed.

The status of breakpoints may be inspected by using the
M command to examine the breakpoint status table. This

is located in RAM locations 2@-2F and are as follows:

Address Contents
20 PCL Bg@
21 PCH B@
22 PCL Bl

23 PCH Bl

Address Contents
24 PCL B2
25 PCH B2
26 PCL B3
27 PCH B3
28 PCL B4
29 PCH B4
24 PCL B&
2B PCH B5
2C PCL Bb6
2D PCH B6
2E PCL B7
2F PCH B7

For example, typing M2@<CR> followed by <LF> gives

M24, 89
Meg21,01, 1

This indicates that breakpoint @ 1is set to location 108 by
taking the contents of location 28 as PCL and of location
21 as PCH. 1f the breakpoint is set at location # then this
particular breakpoint is disabled.

Offset Command O:

The offset command O is a program writing aid. It calculates
branch offsets for the wuser for incorporation as arguments

in branch instructions. Consider the example:

168 E8 LOOP: INX

191 C8 INY

192 69 ADC#1

183 41

126 Dd BNE LOOP

121 (branch argument)

6-18

To calculate the number to enter into location 121 1is quite
tedious without a facility such as the O command. It is used

with the following format.
0<ADDR. OF BRANCH OPCODE><ADDR. OF DEST.><CR?>

and in this case it would be necessary to type @126,100
<CR>. The display would be

0128,109 = DE
|

F@ is the number that should be entered into 1location 121
such that if the BNE instruction is true the program counter

will jump to the label LOOP.

Note that the maximum branch range is 7F forwards and

backwards. If the range is exceeded a ? is displayed.

Copy Command C:

The copy command allows copying of the contents of one

block of memory to another. Its format is
C<START ADDR. SOURCE><END ADDR. SOURCE><START ADDR. DEST.>

Suppose it is required to copy the block of data in locations
FCPP-FDPP into a block starting at location 20@. This may
be achieved by typing CFC@@,FD@8,200 <CR> . The display
will be

CFC@g, FDRg, 200
1

As 208 1is the starting address of the display memory, the
user will notice that the top half of the screen has been
over written with all sorts of weird and wonderful characters.
What this example has done is to take the first 256 bytes
of TANBUG and copy them into the top half of the display.

6-19

The display then scrolled having the top 7 rows filled with

2
these characters.

Breakpoints and the ESC Key

1f an alphanumeric keyboard 1is being wused, depression
of the ESC key - {ALT on some keyboards) will cause a re-
entry into the monitor from the user program. This is possible
because the alphanumeric keyboard is interrupt driven.

For example, if the trivial program

148 69 LOOP: ADC#1

i1 g1

192 4C JMP LOOP
193 90

184 @1

has been started by typing the G command, the program
continues to loop around continuously with no exit path
to the monitor, except by issuing a reset. Instead of a

reset the user can press the ESC key, TANBUG responding
thus |

gl1gg 28 FF 41 #1041
i

Using the ESC key has caused a breakpoint to be executed
and the monitor invoked. The register print-out above is
only typical, - the value of each being that when the ESC
was depressed. Any monitor command may now be typed,
for example P causes the wuser program to proceed once

again.

The ESC facility is most wuseful in debugging where the
user program gets into an unforseen loop where breakpoints
have not been set, It enables the user to rejoin the monitor
without using reset and losing the breakpoints that have

been set.

2 = See Appendix

Notes:

a) The ESC facility is only implemented on interrupt
driven keyboards, i.e. alphanumeric ASCII keyboards.

and is not implemented on the keypad.

b) Interrupt must be enabled for the ESC facility
to operate. TANBUG enables interrupts when entering
a user program, therefore do not disable interrupts

if the ESC facility is required.
c) The wuser must not have modified the interrupt
jump link. TANBUG's interrupt code must be

executed.

Input/Qutput Control

TANBUG V2 contains subroutines, accessible from machine
code or user subroutines, as well as directly via the keyboard,

to allow input/output to user peripherals.

Information about which devices are in wuse 1is stored in
the printer status word, which 1is at location @ 1in RAM.

The word is made up as follows:

bit 7 _ ‘ bit @

BAS SCN SER PAR EXT DC SPECIAL SER

WARM | DIS | O/P Q/P O/P FLAG PRINT 1/P
ON ON ON MODE ON

In more detail:

BIT @ SER 1/P ON - set by the monitor on initialisation
if a serial keyboard is connected
to Tanex. Cleared 1if not, or
if a keypad is connected to
the Microtan, or if an ASCI}
keyboard interrupts.

6-21

BIT 1 SPECIAL PRINT - set to # by monitor on initialisation.

When @, a line of output to a
parallel device is terminated by
LF only, while to a serial device
CR LF is output. This may be
set to 1 by the user so that, if
his printers require them, the
serial interface terminates with
LF only while the parallel interface
gives CRLF.

BIT 2 DC FLAG - used by the monitor to denote output

control codes for printers on/off.

BIT 3 EXT OUTPUT ON - zeroed by the monitor on initialisation.

If set to 1 by the wuser, can be
linked to a user - output driver

subroutine.

BIT 4 PAR O/P ON ~ zeroed by the monitor on initialisation.

If set to 1 by any of the wvarious
conirol commands, initialises the

printer and directs output to it.

BIT 5 SER O/P ON - as Bit 4, but for serial printer

interface on Tanex,

BIT 6 SCN DIS - set to @ by initialisation. If set

to a 1 by control. commands, inhibits

output to the screen.

BIT 7 BAS WARM -Used by the monitor for BASIC

warm start.

Important Notes:

a)

If you wish to change the value of any of the
bits in the printer status word, you should
leave the BAS WARM and DC FLAG bits set to

their current values.

6-22

b) The SCN DIS facility is available for your wuse.
However, the monitor subroutines require the
screen to be enabled for command storage. There-
fore, if you are wusing a teletype for input,
you should leave the screen area enabled, even
though you may not have a TV display connected

to the Microtan.

The bits in the printer status word, as well as being user
programmable, are changed by certain monitor commands,
and also by control codes output via TANBUG. These are

described individually for each printer.

Every time that the subroutine OUTALL or OUTRET (or OUTPCR,
OPCHR)} 1is called, either from the monitor, BASIC, or a
user program, the printer status word is examined and
output is routed to all those devices which are enabled.
Thus you can use your printers with all existing software

merely by controlling the output bits as described below.

Parallel Printer

TANBUG V2 contains software to drive the optional 6522 on

Tanex in a Centronics-type parallel output mode.

Table 1 shows the pin connections for the interface cable.

Function Printer Connector Pin Tanex. Skt No & Pin Function
Data 1 - 2 ci - 2 PAS
Data 2 3 ¢t - 3 PAl
Data 3 4 Cl - 4 PA2
Data 4 5 it - 5 PA3
Data 5 6 Ci - 6 PAL
Data 6 7 cT - 9 PAS
Data 7 | 8 c1 - 10 PAb
Data 8 9 1 - 11 PAT
Strobe 1 1. - 12 CA2
Ack _ 10 c1 - 13 CAl
INIT 31 Dl - 2 PBE
BUSY 11 Dl-—u 3 PB1
ERROR 32 1 - 4 PB2
GND 19 c1 - 7 oY
GND 21 ci - 8 oV
GND 23 p1 - 7 ov

GND 25 pr - 8 ov

6-24

There are two subroutines for the parallel printer - one
to initialise it and one to output data. Timing diagrams

for a typical printer are shown in Figs. 2 and 3.

Fig. 2 - Initialisation

INITIAL | Ti——3

]
J

%
_Busy | l——" MAX .500ms—|
f
8 i
ACK i
le—fe—>
Fig. 3 - Character Output \1_‘ 10 us
et LY
DATA | | —l—l
: i
i
STROBE I ,
—j T3g= | Ts ' ~ i
| ° 5
je— Tu= |
-)
ACK)
!’H-Ii—nl
Te T7

A) T1, T2320.5 (us). Data signal must be stable
during Tl and T2 centering on falling-edge of
STROBE. |

B) 1 (us)gT3g90(us) vuvvnnnn .. Pulse width of STROBE.

C) 30(,3)<T4. Delay time between STROBE input and ris-
ing«-edg-e of BUSY signal is over 30 us.

D) 60(s) £T5. Minimum length of T5 of BUSY signal
is 60 ¢, TH varies with every input data. When
print command is input, BUSY signal becomes
"HIGH" until completion of print-out. {(Max. 3s).

E) T6, T7 = 10(ys). ACK 1is output by falling-edge
of BUSY with the timing of T6 and T7.

) 0<T8. Right after the rising-edge of ACX, STROBE is

allowed to be input.

Fig 4 —~ Signal Descriptions

DATA 1 - 8

STROBE

8 bit parallel data ~ logic H = 1

A low pulse sirobes in data.

A low pulse signifies data received.
A low pulse initialises the printer.
A high indicates the printer is busy.

A Low indicates an error in the printer.

(e.g. no power, paper out).
LY

In addition some printers have an output select pin (output from

Tanex) and paper out pin (input to Tanex). These are not imple-

mented in

Tanbug V2, though of course you may connect these

via the 6522 and your own software if required.

Controlling

the Parallel Printer

The parallel printer can be controlled in several ways:

a)

When running the monitor, or the BASIC interpreter,
the printer can be turned on or off by typing +P
(hold down the CTRL key and hit P). Successive opera-
tions of this kind alternately turn the printer on and
off. As an example, consider listing a BASIC program
(the printer is off).

Program entry

10 PRINT "THIS 15 AN EXAMPLE"<CR>

L1ST +P <CR-

The printer is turned on and your program listed.

The 4P is not printed.

§-26

b) From within a user program, you can turn the printer
on by using the OUTALL subroutine to output the code
(DC1) 2. Thereafter, all output transmitted by the OUTALL
subroutine is also transmitted to the printer (see section

on subroutines).

Example, to turn the printer on:

LDA #% 11
ISR OUTALL ;output DC1
LDA #$2

JSR OUTALL joutput 2
The printer can be turned off by outputting (DC1) 3.

c) You «can output directly to the parallel printer without
going through OUTALL by using the QUTPAR subroutine,
but note that the printer must be initialised first.
Refer to the detailed description of subroutines.

d) The printer is turned off by a RESET.

Printer Errors

1f your printer is in an error condition, the system will fail to
respond for 10 seconds while a timeout check takes place. The
message "PRINT ERROR" will then be displayed on the TV screen,
and the printer will be disabled by TANBUG. Rectify the error

and repeat.

Note that the many printers work in line mode, 1i.e. characters
are stored up until a line terminator {LF) occurs, then the whole

line is output in one shot.

6-27

Using Other Types of Parallel Printers

Other types' of parallel printers with a Centronics - compatible
interface should operate without modification. Note, however, that
some printers use <LF> as a buffer terminator - Tanbug V2 outputs
a line of text terminated by <L¥> only - no carriage return is
output. 1f your printer requires the sequence <CR LF> then you
can set the '"special print" bit in the printer status word, which
will cause this sequence to be output. Use the following code,

which must be executed after every reset:

LDA $@- ;get status word
ORA #2 jset print bit
STA $¢ ;store it

If you wish to use a non-Centronics parallel printer, you must

add logic to produce the interface signals shown in Figs. 2 and

3.

IMPORTANT NOTE

1f the data transfer rate to your printer is slower than your cassette
data rate, you must didable your printer before using the XBUG

E or F commands, otherwise filename errors will occur.

Serial Printer

Tanbug V2 contains software to drive a serial printer via the
UART on Tanex. The interface may either be V24 or 20mA current

loop - refer to the Tanex manual for selection.

Fig. 5 shows the printer connections.

6-28

Fig. 5 - Serial Printer Connections

Function Tanex Connection

Printer Ground - - E1 -7

Printer Drive (V24) L -F1 -3

or

Printer Drive (20mA)} + Et -1

Printer Drive (20mA)} - El1 - 2

Printer Enable El - 8 connect to E1 - 7

Note that the modem control pin 8, printer enable, must be grounded
to operate - you can ground this at the printer end if required

so that an error is given if the printer is not connected.

OEeration

Whenever a reset is executed, the serial printer interface is set

up to the following specification:

110 baud

internal clock Rx
8 bits/word

2 stop bits

Parity disabled
Non-echo
Interrupt disabled
RTS Low

Enable Rx/Tx

This allows connection of a normal 110 baud teletype printer.3
Qutput can be controlled by the following methods:

a) From any monitor command, or from BASIC, repeatedly
typing +V (hold down CTRL and hit ¥) alternately
turns the printer on and off. When on, any outpul
from BASIC, from the monitor, or via the OUTALL or

3 = See Appendix

6-29

OPCHR subroutines, is directed to the serial printer

as well as any other output device which is enabled.

b) From within a user program the printer can be turned
on by using the OUTALL subroutine by outputting (DC1)
¢ and off by (DC1)1.

See example under parallel printer.

c) You can output directly to the serial printer without
affecting other devices by using the OUTSER subroutine,
See section on subroutines.

d) The printer is turned off by a reset.

Printer Errors .

If the printer is disabled for hardware reasons, the message
"PRINT ERROR'" is displayed on the screen, and TANBUG V2 turns

the printer off.

IMPORTANT NOTE

If you are using a printer at 110 baud, you must turn the printer
off before using XBUG V5 "E" and "F" commands, otherwise due
to the slow transfer raté-filénhame.errors willcoccur. Cassette handling

should be executed wvia the screen.

Using Other Serial Printers

TANBUG V2 initialises the serial printer as stated above. 1If you
wish to wuse printers with other specifications (for example, a
different baud rate) you can modify the UART status registers
BFD2 and BFD3 via the monitor '"M" command, referring to the
Tanex Manual for the functions of each status bit. Note that you

must do this after each reset.

6-30

TANBUG V2 outputs CR LF at the end of each line, this sequence
being required for most serial devices. By setting the "SPECIAL
PRINT" bit in the Printer Status Word (described in more detail
in the Parallel Printer Section) you can output LF only as a ter-

minator.

Screen Qutput Suppression

TANBUG V2 allows you to suppress output to the screen display
- this is useful, for example, in situations where you wish to
input data via the keyboard and display and output different

X
data on the printer.
Screen output is turned off and on as follows:

a) In the monitor or BASIC, or via the JPLKB or POLLKB
subroutines, by typing 45 (hold down CTRL key and
hit $). Successive operations turn the display off and

on.

b} From within a user program the screen is turned on
by outputting (DC1) 4 via the OUTALL subroutine, and
off by (DCl) 5. See example under parallel printer.

c) Qutput can be made to the screen without affecting
other enabled devices by calling the OUTSCR subroutine.

See descriptions of subroutines.
d) The screen is turned on by a reset.
IMPORTANT NOTE. The monitor ‘subroutine HEXPGK, and also

XBUG use the screen as data storage. Therefore, it is necessary

to enable the screen when using the monitor even though you may

not have a TV display connected.

4 = See Appendix

6-31

External Output Devices

TANBUG V2 allows you to link in your own output device to work
with the Monitor and Microsoft BASIC. If bit 3 in the printer status
word, EXT O/P ON, is set, then the zero-page locations INTSL2,3
are used as a jump location to link in your own handler subroutine.

As an example:

LDA #¢ juser program code

STA INTSL2

LDA #49

STA INTSL3 ;user subroutine at 4000

LDA PSTAT ;get status word

ORA #8

STA PSTAT ;turn on ext printer
LP0e ;user subroutine

RTS

Note that the subroutine must be in memory before the external

‘drive is enabled.

The external printer may be turned off by the code
LDA PSTAT
AND #F7
STA PSTAT

It is also turned off by a reset.

NOTE 1f you enable the external printer, you cannot link in extra
interrupts wusing the INTSL1 facility (described in the interrupt
section). Use the INTFS facility instead.

i

0011
0012

INTSL2
INTSL3

I

When a (DCl)(Number) code 1is output,

the output device. Should you wish to output a DC1 code directly,

then you should write DCl twice:

LDA#11
JSR OUTALL
LDA#11
JSR OUTALL

which will cause one DCl to be printed.

Any illegal codes (DC1) (Illegal code) will cause just the illegal

ASCl1 code to be printed.

Note that the Translator and Instruction Disassembler in XBUG
V5 is primarily for use with the TV display, and give an abridged

format on each type of printer. Later versions of XBUG will give

the correct printing format.

Using an External Keyboard

TANBUG V2 will accept serial input from the UART on TANEX, and

feed it to the monitor and BASIC programs. It is a;:cepted via

the JPLKB (POLLKB) subroutine.

Fig. 6 shows the serial input connections.

these do not appear at

Function Tanex Connection
Ground El - 7
PCD Ei - 10
DSR El - 11
Serial in V24 El - 12
or

20mA in + El - 13
20mA in - El - 7

To enable the input, DCD and DSR must be tied to ground. This

can be done on the input plug so that serial input 1is only recog-

nised when a keyboard is plugged in.

Method of Operation

On a reset, TANBUG V2 looks to see if a keyboard is connected
by determining whether DCD and DSR are tied to ground. If
they are then the serial interface is set up as described under
serial printer but in addition the UART input interrupt is
enabled, and the serial printer is turned on. The JPLKB sub-
routine (used by the Monitor and Microsoft Basic) recognises
interrupts from the serial keyboard, and passes them to the

monitor.

1f, while the serial keyboard is enabled, an interrupt from
the Microtan keyboard port occurs, the serial keyboard is
disabled and future input must come from the Microtan keyboard

until another reset occurs.

You should always press reset after plugging in an external

keyboard since this can cause an error interrupt.

If you are using a hex keypad to initialise the Micron, you
may leave the pad plugged in. The monitor will accept input
only from the keypad until the following sequence of operations

is typed:-

Press return key on teletype

Press return key on keypad
Input will now be accepted from the teletype.

Once the serial input is disabled, either by the user or via
an interrupt from the Microtan keyboard port, bit @ of the
Printer Status Word (SER I/P ON) is cleared. Under this con-
dition, the monitor interrupt routine will not recognise a UART
interrupt. This enables the wuser to configure the system,
via the software interrupt link, to handle UART interrupts

for his own purposes. ’

6-34

NOTE that if you are using serial input/output with no display,

you must use the +V command to turn off the printer while

reading cassette tapes, otherwise due to the slow printing

speed, Filename errors will occur.

As with the serial printer, you can modify the UART status
words BFD2 and BFD3 to allow keyboard input at different
baud rates, different word lengths etc. Refer to the Tanex

manual for status word designations.

The input and output speeds must be the same baud rate -

different input and output speeds are not allowed.

External Input to Monitor

External input devices running under interrupt can be linked
to the monitor. Interrupt link INTSL1l, 2, 3, {see section on

interrupts) should be set to jump to user code of the form

4

PUSH ACC ON STACK

INPUT DEVIC YES

INTERRUPT 2

: |4
"CLEAR INTERRUPT

b

LOOK FOR OTHERS | : ACC=INRUT ASC11 CODE

)

IMP .]WA SKB

6-35

User Subroutines

Certain input/output subroutines are available to the user.
Since these rely: on a standard display format, this will

be described first, followed by the user subroutine descriptions.

Tanbug V2 contains more user subroutines than Tanbug V1.
Note that you can use your software written for Tanbug V1
without modification, since care has been taken to preserve
the same locations for subroutines in Tanbug V2. Tanbug V2,
however, contains a jump table at the low end of ROM, and

this should now be used to access subroutinesin future programs.

Display Format

Tanbug V2 is equipped with a ';screen clear, cursor home"
command. Monitor commands can be input on any line of the
screen, but must begin at the left-hand édge. The cursor
moves towards the right as characters are entered. When a
line is filled, or a carriage return is output, the cursor
moves down one line wunless it is on the bottom 1iﬁe, when
the display is scrolied (all lines shift up one row) and the
bottom line becomes available for more outpu;t.- However, there
is no reason why wusers should restrict themselves to this
mode of .operation unless they intend to use Tanbug's subroutines
to control the display in their own programs. It should be
moted that the display memory is read/write memory and may
be used as a character buffer prior to processing thus saving

RAM locations for a user program.

Subroutine JPLKB

Subroutine]PL}{B is used to interrogate the keyboard for a
typed key. (Appropriate software for the type of keyboard
in use is automatically set-up by TANBUG when a reset is
issued). On exit from the subroutine the RAM location labelled
1ICHAR (address @@@1) contains the ASCI1 code of the character
typed, whether it is typed on the keypad or on an alpha-
numeric keyboard. When using the alphanumeric keyboard,
interrupts must be in the enabled state. As an example use

the code

6-36

1) CLI ;enable interrupts
2) JSR JPLKB ;poll the keyboard
3) LDA ICHAR ;load acc. with character

The sequence of operations here are

1) Endble interrupts so that alphanumeric keyboard may

be interrogated.

2) The program loops around within the JPLKB subroutine

until a key is pressed.

3) The program exits from JPLKB with the ASCIl code for
the key pressed in the 1location labelled ICHAR. The

accumulator is loaded with this value.

Notes: Address of JPLKB is F81D. Address of ICHAR is @@@l. The
registers 11X, 1Y and A are corrupted, therefore, the user must

save and restore their values if necessary.

Subroutine OUTRET

This subroutine outputs a carriage return to all the output devices,
which react if they are enabled. It also re-instates the cursor,
which 1is switched off when a user program is started. This sub-
routine should be called in a user program prior to any display
input or output to clear the bottom line.

Notes: Address of subroutine OUTRET is F80B. Registers IX and
1Y are unaffected. Register A is corrupted and must be saved

if required. This subroutine 1is equivalent to OUTPCR in Tanbug
V1.

Subroutine QUTALL

This subroutine is called to output a character held in the accumu-
lator, to all output devices which react if they are enabled. The
cursor, obliterated on a wuser program start, is re-instated. As

an example, consider the code

-
.

LDA#30
JSR OUTALL
LDA#31
JSR OUTALL

.
»

Since 3@ 1is the ASCI1T code for the character "' and 31 is
the ASCI1 code for the <character "1", the result (assuming
this 1is the first call to this subroutine) on the current line

of the display is
g1l

Repetitive calls of OUTALL will fill the <current 1line of the
display with the appropriate characters. When the end of the
line is reached, OUTALL moves on tb~ the next line on the
display. Carriage return 1is not output to printers, though

you can of course output a carriage return via OUTALL.

Notes: Address of subroutine OUTALL is F8PE. Registers .. IX
and 1Y are unaltered. Register A is corrupted and must be
saved 1if required. This subroutine is equivalent™ to OPCHR:n
Tanbug V1. "

Subroutine JHXPN

Subroutine JHXPN takes a binary wvalue from the accumulator
and outputs it as two hexadecimal characters to all output

devices. Consider the code

6-38

PHA ; save A on stack
JSR OUTRET ; scroll display
PLA : recover A

JSR JHXPN ; output A in hex
JSR OUTRET ; scroll display

This code will display the contents of the accumulator as two
hex characters. For example if the accumulator contained the

value 2C the resulting display would be

2C
1

Notes: Address of subroutine JHXPN 1is ¥FB81A., Register 1Y s
unaltered. Registers 1X and A are corrupted and must be saved
if required. This subroutine is equivalent to HEXPNT in Tanbug
Vi.

Subroutine JHXPK

This subrouline reads hex characters from the current line of
the display and packs them up into two eight bit binary values,
enabling a sixteen bit word to be assembled. It is useful for
incorporation into programs which require numerical keyboard
input. Usually JPLKB 1is wused in conjunction with OUTALL to
enter data to the display, then JHXPK called when a carriage
return is encountered. The following wuser code could be wused

to do this

JSR OUTRET ; scroll display
NXTCHR: JSR JPLKB : wait for character

LDA ICHAR ; put it in A

CMP# 2¢ : carriage return ?

BEQ GOPACK ; yes, pack it

6-39

JSR OUTALL : else store in display

JMP NXTCHR. ; get next character
1) GOPACK: LDY#0@ ' ; set 1Y to first char.
2) JSR JHXPK + pack it

3)

In this example the subroutine is used in the following way:

1) Set 1Y with the character position at which packing
is to start. The 1left most location of the current
line corresponds to setting 1Y to #. The next location

corresponds to 1Y equal to 1 etc.

2) Call JHXPK. Characters are packed until a character

other than 0-9 or A-F 1is encountered; an exit then

OCcurs.

3) Continue into the wuser code where the values of
HXPKL and HXPKH will be read. '

For example, packing 1 CR gives HXPKL = 1 and HXPKH = 4.
Packing FEDC CR gives HXPKL = DC and HXPKH = FE. Packing
FEDCBA CR gives HXPKL = BA and HXPKH = DC, i.e. if more
than four hexadecimal characters in succession are encountered
then the last four are packed. Additionally, two flags in
the processor status word (PSW) are used to indicate exit conditions.
The zero flag Z is. clear if the terminating character is the
cursor (ASCI1 code FF), set otherwise. The overflow flag V
is set if there was one or more hex characters, clear if the
first character encountered by the subroutine was not a hexadecimal

character.

Notes: Address of subroutine JHXPK is F817. Address of HXPKXL
is @P13 and HXPKH is @@l4. Registers 1X, IY and A are all
corrupted and must be saved 1if necessary. This subroutine

is equivalent to HEXPCK in Tanbug V1.

Subroutine JCURSF

Subroutine JCURSF is used to obliterate the cursor from the screen.
It writes a space into the location pointed to by ICURS +. ICURSH
and VDUIND, where the cursor would be displayed by the monitor
and OUTRET, OUTALL subroutines. Address of]JCURSF is F829. No

registers are corrupted.

Subroutine JCURSN

Subroutine JCURSN is the converse of JCURSF, that is it writes
the cursor symbol 7F to the location pointed to by ICURS + 1CURSH
and' VDUIND.

The above two subroutines can be used to control the Microtan
cursor. Refer to the display address map on page 3.2 of the Microtan
manual to obtain the addresses of the start of each line. A program
to place the cursor at the end of the second line on the display

would be as follows:

JSR JCURSF ; turn the cursor off, wherever it is
LDA #20 ; set low part of line address

STA 1ICURS

LDA #2 ; set high part of line address

STA 1CURSH

LDA #$1F

STA VDUIND ; set how many chars long line

JSR JCURSN i switch the cursor on

JCURSN is located at FB826. No registers are corrupted.

Subroutine RETMS

Calling subroutine RETMS {(via JSR or]MP) can be used to return
to the monitor after executing your program, without a Tanbug

message being printed. The stack pointer is reset to 1FF.

Address of RETMS is F820. The monitor corrupts X, Y and A.

Subroutine RETMON

This subroutine performs as RETMS, except that the stack is not
reset. You can therefore return to the monitor, via the instruction
JMP RETMS, without changing your programs stack. By calling
JSR RETMON, you can if required call the monitor as a subroutine

in your program.

RETMON is located at F823. The monitor corrupts X, Y and A.

Subroutine JMNRW

Subroutine JMNRW is included to allow simple manipulation of the
memory management system. (For hardware operation, refer to the
section on memory management)., The subroutine itself is located
in the Monitor area, with its variables in zero page. These areas
are not affected by operation of the memory management., Sub-
routine JMNRW can therefore be called from code resident in bank
§ to access other pages. on exit, page @ is reselected by the sﬁb—

routine,
The following zero-page locations are used by the subroutine:

MEMSEG(40): The least significant 4 bits are set by the user to
contain the page number to be written to. If they are set to #
a write operation is not executed. The most significant 4 bits
operate similarly for a read. . (They correspond directly to the
memory management status word). The subroutine is thus multi-
purpose in that it can read, write, or read old contents and write

new contents in one operation.

MEMDAW(41): The user loads this locationn with data to be written
before calling JMNRW.

MEMDAR(42): The subroutine loads this location with data read

from the required location,

MEMLO(43): Low byte of address to be manipulated.

MEMHI(44): High byte of address to be manipulated.

Note that the subroutine does not change the contents of any of
these locations, therefore if you wish to repeatedly read and write
from a particular location you only need to carry out the setup

procedure once.

Example - to read from location 6000 in page 1,' and then write

a different value:

LDA #11 ; set up for read and write
STA 49 i to page 1

LDA #FF

STA 41 ; data to be written

LDA #0

STA 43

LDA #68 ; set up address

STA 44

JSR JMNRW ; execute

LDA 42 ;: read data loaded to acc.

Address of JMNRW is F81l. No registers are corrupted.

Subroutine JMNRW1

This subroutine is:exactly equivialent. to JMNRW, but after the operation ..
has been executed, the address held in locations 43, 44 is in-

cremented by 1, providing a convenient means for block operations.

Address of JMNRWI1 is F814.

Subroutine PRPUP

Subroutine PRPUP powers up the parallel printer interface, and
initialises the printer ready to receive data. See also the section

on input/output control.

Note that this subroutine does not set the "PAR ON" bit in the
Printer Status Word, but merely sets up the hardware to initialise

the printer.

PRPUP is located at F8@f. The accumulator is corrupted.

Subroutine QUTPAR

Subroutine OUTPAR outputs the character held in OCHAR (locafion
2} to the parallel printer interface, irrespective of whether the
"PAR ON" bit in the printer status word is set. The printer should

be initialised via PRPUP at the start of your program.
OUTPAR is located at F8#3. A. X and Y are corrupted.

Subroutine QUTSER

As OUTPAR, but outputs via the V24 UART on Tanex. There is no

need to initialise this, as it is done by Tanbug on a Reset,
OUTSER is located at F8@6. A, X and Y are corrupted.

Subroutine QUTSCR

Subroutine OQUTSCR takes the ASCI1 wvalue in the accumulator, and

outputs it to the display screen but neither printer.

OUTSCR is located at F8¢9. A, X and Y are corrupted,

InterruEts

TANBUG uses the maskable and non-maskable interrupts. However,
means have been provided to access the interrupts via both hard-
ware and software. Of necessity wuser interrupts may, in some

cases, place restrictions on certain monitor commands.

The Maskable Interrupt

When TANBUG 1is initialised by a reset, certain RAM locations are
set up to link through the interrupts for monitor use. These loca-
tions are labelled INTFS1, INTFS2, INTFS3 and INTSL1. When a
maskable interrupt occurs, the following sequence of events is
obeyed {(assuming the RAM locations mentioned above have not been
modified),

b)

c)

d)

The program jumps to INTFS1 in RAM.

The Tlocations INTFS1, INTFS2 and INTFS3 contain the
instruction JMP KBINT. The program therefore jumps
to KBINT which resides in the monitor ROM.

The monitor software looks to see what caused the inter-
rupt. If a BRK instruction, then the breakpoint code
is executed. 1f a keyboard interrupt, location ICHAR
is updated with the new ASCI1 character which is read

from the keyboard 1/0 port.

If the interrupt is caused by anything other than a

BRK instruction, then the monitor jumps to location
ALY

INTSL1.

Normally INTSL1 contains an RTI instruction - the pro-

gram would then return to where it was interrupted.

It can therefore be seen that the user can implement his/her own

interrupt service routines in two ways.

1)

2)

A fast interrupt response by modifying the locations
INTFS1, INTFS2 and INTFS3 to jump to the user inter-
rupt service code. In this case breakpoints and the
ESC command cannot be used unless the user program
jumps back to the monitor service routine after execut-

ing its own code.

A slower interrupt response by modifying INTSL1, INTSL2
and INTSL3 to jump to user service rvroutine, after
executing the monitor service routine. The RAM locations
INTSL1, INTSL2 and INTSL3 would be modified to contain
the instruction JMP USER. This method places no res-

trictions on monitor commands.

The slow interrupt facility cannot be used if the external

output link 1is in operation. See section on printers.

A number of things should be noted when using interrupts:

a) An RTI instruction must always occur at the end of
user code to return the program to the point at which
it was interrupted, unless the user code jumps back

to the monitor service routine.

b) If a reset is issued, the INTFS and INTSL locations
are set back to their monitor values by TANBUG, and

the user has to reset them.

) 1f any microprocessor internal registers are used in
the user interrupt service routine, they must be saved
before modification, and restored before the RT! instruc-
tion, 1i.e. on return to the monitor -the registers 1X,
1Y and A must contain the same values as they had

on entry to the user routines.

d) The interrupt jump locations should be modified by
instructions in the user program at run time and not
by the use of the M command. This is because TANBUG
software uses keyboard interrupts. If using an alterna-

tive link at INTFS51, no breakpoints can be set.

e) Addresses of RAM locations are: INTFS1 = @@@4, INTFS2
= J@@5, INTFS3 = ¢@go, INTSL1 = @@1@, INTSLZ = @11,
INTSL3 = @g12.

The Non-maskable Interrupt

The non-maskable interrupt vector is accessed in the same way
as explained for the maskable interrupt. The user can obtain
access by modifying locations NMIJP, NMIJPI, and NMIJPZ. Note
that single instruction mode will be inoperative and that break-
points will be destructive, i.e. they are destroyed when they have
been executed once and replaced with the original code. Addresses
of RAM locations are: NMIJP = @@@7, NMIJPl = @@@8 and NMIJP2
= @09,

6-46

Error Linking

It will be noted that TANBUG displays a question mark whenever
an illegal command is typed. In order to allow future expansion
of the monitor, an error link to memory external to the monitor
ROMs is incorporated.

When an error occurs the following sequence of events is initiated:

a) The program jumps to F7F7.

b) With no expansion board (TANEX) present the address
F7F7 (outside TANBUG space) 1is decoded as address
FFF7 (inside TANBUG space).

cc) A question mark is printed.

With TANEX present, a special link is incorporated to return the
program to the monitor., The user may remove this link and insert
an EPROM in the position which includes the address F7F7 contain-
ing the code JMP USERCODE at address F7F7, where USERCODE may
contain software to deal with any extra commands the user wishes
to add to the monitor. Note that this facility will be used by
future TANGERINE software.

There are two methods of returning to the monitor from external

code:

1) The instruction RTS at the end of the user code returns
to the monitor, gives a carriage return then continues

looking for commands.

2) The instruction JMP FFF7 returns t¢.the monitor, giving

a question mark on the display.

Example of TANBUG's Use

The following siimple example program clears the screen by calling
OUTPCR F times, then slowly fills the screen with asterisks. It
is used as an example to demonstrate the use of some of TANBUG's
commands.

Deliberate errors are later written into the program to demonstrate
TANBUG's fault finding capabilities.

The first step in writing a program 1is to produce a flowchart
of program execution. The second step is to write the program
in assembly language code using the instruction mnemonics. The
third step is to look up and write the op-codes and arguments
for each instruction. At this stage the branch code arguments
will be left blank and TANBUG's O command used.

' The flowchart and program listing now follows.

6-48

Start

Set index to

Call OUTPCR

Decrement index

Yes

Dbliterate cursor

Initialise
display index

Qutput =

Delay

Increment
display index

Displey fuil?

Yes

Return to monitor

PO
P52
PP54
PBs7
P58
GBS A
PpsC
dPSF
P61
P63
1,0:315Y
P67
P69
?@6B
@@eD
. Gg6F
Po71
gp72
BB74
oh75
OD77
P78
D7 A
oP7C
- P7E
@p8p
pps2
P84
P86
@pes
pdsA

o
@F
73 FE

(arg 1)
29

E¢ @3
0]

5@

P2

51

%)

2A

5@

Pr

FF

(arg 2)

(arg 3)

(arg 4)
51
51
@3
(arg 5)
5¢
FF
(arg 6)

Example program listing

NOMSB:

VDUIND: @ ;display index
START: LDY# F iset Y index
SCRAG: JSR OUTPCR ;carriage return
DEY ;jdo E times
BPL SCRAG
LDA# 2¢ jload A ascii space
STA 3ED ;obliterate cursor
LDA# 9 ;set display index
STA VDUIND
LDA# 2
STA VDUIND+1
CONT: LDY# @ ;clear Y index
LDA# 2A iset ascii *
STA (VDUIND),Y
LDX# F ;delay loop
LDY# FF
DECIT: DEY
BNE DECIT
DEX
BNE DECIT
CLC yinc display index
INC VDUIND
BNE NOMSB

INC VDUIND+1
LDA VDUIND+1 ;top of display?
CMP# 3

BNE CONT ;o ~ continue
LDA VDUIND

CMP# FF

BNE CONT ; double prec. cmp.

BRK ireturn monitor

Program entry is performed using the M command. For the time
being set the branch arguments (arg 1 - arg 6) to 99, these can

be altered when calculated, using the O command.

Once the program is entered the branch offsets are calculated.
The first is arg 1 which has an opcode address of @@58 and
branches to the label SCRAG at location #@54. By typing 058,54 CR
TANBUG prints out the value of arg 1 as FA. This may now be
placed in location @@59 using the M command. By repeating the
exercise for the other five arguments, it will be found that loca-
tion @@73 should contain FD, @@#76 should contain FA, @@7B should
contain @2, ##83 should contain E3 and @@#89 should contain DD.

The program will now run if it has been entered correctly. To
start the program type G52 CR since the first instruction of the
program is at location @@52. When the screen is full of asterisks
the program exits to the monitor. Alternatively, if an alphanumeric
keyboard is being used, depression of the ESC key causes an exit
to the monitor. If the program does not run correctly, then it
may be necessary to issue a reset in order to regain control.
' The program can be listed by typing L5#,8 CR yielding a display
of

L54,8

ggsp o0 98 A@ OF 28 73 TE 88

658 19 FA A9 20 8D EF @3 AS

goeg @@ 85 58 A9 @2 85 51 Ad

pg68 @@ A9 2A4 91 58 A2 @F AD

gg7¢ FF 88 D@ FD CA D@ FA 18

@878 E6 5§ D@ @2 E6 51 A5 51

gPgs C9 @3 D@ E3 A5 58 C9 FF

gp88 DY DD @p XX XX XX XX XX

providing the program has been correctly entered (XX indicates
any value as these locations are not part of the program). 1f
the program failed to run, carefully check the listing from the
L command with the program listing and correct any errors with

the M command.

Having got the program working it is now possible to introduce
a deliberate error to demonstrate the use of breakpoints and the
single instruction mode. The error to be introduced is to put the
wrong value for the branch argument on the first occurrence of
the instruction BNE DECIT; instead of location 73 containing FD
change it to ¥B. Now the register 1Y will never be zero and the
program will loop here. 1f the program is started now only one
asterisk will be printed and then nothing else will happen.

Debugging steps are as follows:
a) Regain control to the monitor by issuing a reset,

b) The first part of the program is being executed correctly
as the display scrolls. Furthermore, it 1is at least
getting to location 6B because an asterisk is printed.
It would be very tedious to single instruction this
far from the beginning because the OUTPCR routine
is called sixteen times. Therefore, set a breakpoint
at location 6D by typing B6D,@<CR>.

c) Start the program again by typing G52<CR>. The display

scrolls and the status message-

g@eD 31 FF OF 08 24
i

is displayed. Control is now back in the monitor.
d) Set single instruction mode by typing S<CR>.

e} Repeatedly typing P <CR> causes single instructions to
be executed followed by a status print-out. The follow—

ing sequence of instructions will be observed.

gg6F 21 FF @F @9 24
#9671 Al FF @F FF 24A
gg72 Al FF @F FE 2A
@g6F Al FF @F FE 2A

Now if the code were correct the program could not
go back to location 6F. In fact, since 1Y 1is shown
to be FE, the program should have jumped back to
location 71. The Dbranch instruction is probably at
fault, therefore examine it and its argument using

the M command.

M72, DG,
Mpe73,FB, 1

The wvalue in location 73 should be FD, therefore, change
it by typing FD<CR>.

£) Remove single instruction mode and breakpoints by
typing N<CR> the B<CR~>.

g) Restart the program by typing G52<CR> . The program

should now run correctly.

Note that when wusing an alphanumeric keyboard, debugging is
slightly easier. When the program sticks in a loop ESC can be
used to return to the monitor (provided interruptis have not been
disabled). Single instruction mode can then be set to determine

the loop in which the program was running.

Memory Management Control -

The memory management system allows selection of alternative banks

of certain areas of memory:-

)
Z Page ?QQ ; Unaffected by memory
Stack ifF) Mmanagement
Disp}ay AFF ;
TANEX RAM)

1FFF)
2000 Alternative banks within
y this range can be selected

)

)Unaffected by memory
management

BBFF

10 ROM

Nt N e’

This is.carried out by means of a write-only status word at location
FFFF. - located within the monitor space, but since the monitor
ROM is read-only, " a write to this location does not affect the

monitor, and saves address space.

The control register is allocated as follows:

7 6 5 4.3 2 1 @ BIT

Read Write

Bits 0,1 and 2 (for write) and 4, 5 and 6 (read) control which
expansion slot within the motherboard is to be accessed. Bit 3
(write) and 7 (read) must be @ to access the system rack containing
the Micron, 7 to access an expansion rack . It can be seen that
the ROM area, the 1/0 area, plus the 7K of RAM on TANEX, are
unaffected by the memory management settings. Thus any of the
programs in ROM, plus those written for the TANEX 7K, can access
any page of additional memory simply by setting the required

bits in the Memory Management word.

However, when a program is written to reside in RAM upwards
of address 2000, it is not possible to use code located within this
space to read data from another page because, as soon as the
memory management status read page 1is changed, the instruction

fetch will also occur at that page.

To allow data to be written/retrieved from other pages in this
case, two memory management subroutines, fully described in the

subroutine section, are supplied.

It is strongly recommended that page # only of additional RAM
(200@-BBFF) is used to store code {machine or BASIC) and that

other pages are accessed via the memory management subroutines.

Tanbug V2 and Microsoft Basic

Tanbug V2 has been designed to be completely compatible with
existing versions of Microsoft Basic. In addition, extra facilities

have been included to enhance BASIC's features.

Basic Initialisation and Warm Start

Instead of typing GE2ED <CR> to start BASIC, you should now
type

BAS <CR>

This starts BASIC for you, and initialises the system so that

you can recover with a warm start. (GE2ED does not do this).

Now, if vou exit from BASIC using THE RESET key, you can

re-enter it, preserving the program you had entered in BASIC,

by typing
WAR <CR>

you can, in fact, execute other monitor functions (Modify Memory,
Translate, Instruction disassemble etc.) 1in Dbetween leaving
BASIC and re-entering it, provided you do not corrupt any
of locations (hex) 80 - 15F, or any of your program locations
(from 400 upwards, the limit depending on the length of your

program).

Your can NOT use WAR when:

a) Reset-was hit while BASIC was dumping to cassetie.
b) Reset was hit while BASIC was loading from cassette.

c) If you have not first initialised BASIC with a BAS

command.

6-55

A failure-to-run will be denoted by a breakpoint status error
printout, from which it will be necessary to hit RESET and
type BAS.

Printer Control from Microsoft BASIC

There are two methods of printer conirol via TANBUG V2, direct

mode and program mode. (See also section on printers).
In direct mode, printers can be conirolled as follows:

CTRL P - repeated operations alternately turn the

parallel printer on and off.

CTRL V - repeated operations alternately turn

. the serial printer on and off.

CTRL S - repeated operation alternately turn
the TV display on and off.

In program mode, certain character pairs can be output to

control the printer as follows (decimal numbers):

17, @ Serial output on
17, 1 ‘ Serial output off
17, 2 Parallel output on
17, 3 Parallel output off
17, 4 Screen on

17, 5 Screen off |

As an example, the following program 'asks a question on the
display, prints the answer on the printer but not on the display,
then asks another question on the display (printer is off,

screen on assumed at start).

6--56

g INPUT “WHAT 15 YOUR NAME"; AS$

26 PRINT CHR$(17); CHR$(S); CHR$(17); CHR$(2)
3 PRINT A$

48 PRINT CHR$(17); CHR$(3); CHR$(17); CHR$(6)
5@ INPUT "WHAT 15 YCUR ADDRESS"; A%

etc.
Clear Screen

In direct mode, typing CTRLL (except when in EDIT) clears the
display and puts the cursor in the top left hand corner of the

screen. Subsequent operations then work down the screen.

A screen clear can also be called from program mode by the

instruction
PRINT CHR$(12)

Memory Management Control

Page @ of expansion RAM (address 20@¢ upwards) only, can be
used for BASIC program expansion. Other memory pages can be
used for data storage by calling the memory management subroutines
via the USR command. For a full description of these subroutines,
see the soubroutine section and memory management section of this

manual.

As an example, consider a BASIC subroutine to read the contents
of memory location 6@@@ (hex) in page 1, and then write 1 to it:-

{the comments are for clarification and are not part of the program),

4PP8 POKE 34, 17
4p1¢ POKE 35, 248 ; set up subroutine address (F8Thex)
4929 POKE 64, 17 ; set up which page (llhex), read and

write

6-57

4033 POKE 65, 1 ; data to be written

ipLB POKE 67, 0 ; mem address (6000 (hex))
058 POKE 68, 96

LO6E X = USR(I) : execute

LB78 X = PEEK (66) : read data into X {before write)

Since all locations except the read value are unaffected (unless
you use the INPUT command) subsequent writes need only consist
of

4080 POKE 65, 2 : new data

4098 X = USR(1) ; write

Note that you can also call the MMINC subroutine (POKE 34,20
POKE 35, 248) which automatically increments the memory address
in locations (decimal) 67 and 68. This facility enables writing

to or reading from sequential locations with minimal code overhead.
Note that decimal locations 64 - 68 are corru?ted by use of the
input command, so if this is used between memory management

operations, these locations must be reset by POKES.

Cursor Control

The cursor may be placed anywhere on the screen by calling the
JCURSF and JCURSN routines in A Tanbug V2, wvia the USR «call.

The screen can be divided as follows:

@ 1 2 38 31 X coord
(decimal)
@2 9¢
@2 32
@2 64

etc

6-58

A flow diagram for the cursor control subroutine is as follows:

4

POKE ADDRESS OF JCURSF
SUBROUT INE (41, 248)
INTO 34, 35

h 4

CALL USR

POKE Y CO-ORD INTO 14,11
{zee diagraml

L ~

POKE X CO-ORD INTO 3

+

POKE JCURSN (38, 248)
IN 34, 3%

CALL USR

The cursor will, of course, obliterate the character over which

it appears.

The example program below make the cursor appear in the top
right-hand quadrant of the screen, (it is necessary to type CTRLC

to exit from this program).

19 POKE 34, 41
28 POKE 35, 248
3¢ X = USR(®)
49 POKE 10, 32
58 POKE 11, 2
60 POKE 3, 3f
78 POKE 34, 38
8¢ POKE 35, 248
9% X = USR (@)
148 GOTO 1¢¢
OK

6-60

TABLE OF HEX ASCII CODES

/) - NUL

3 Control A - Home

g2 Control B

@3 Control C

P4 Control D

@5 ' Control E

76 Control F

@7 Control G - Bell

@8 Control H - Backspace

)e] Control I - Horizontal Tab - Cursor Right
PA Control J - Line Feed

@B Control K

gC Control L - Page Clear - Form Feed
@D Control ™ - Carriage Return
PE Control N

PF Control O .)

i Control P

11 Control Q

12 Contol R

13 Control 5

14 Control T

15 Control U

16 Control V

17 Control W

18 Control X

19 Control Y

1A . Control Z - Vertical Tab - Cursor Up
1B 51

1C 232

iD S3

1E s4

1F S5

Note that the codes @@ - 1F produce special symbols when used
in display memory.

6-61

TABLE OF HEX ASCII CODES (CONTINUED)

60
61

Space

2¢
21
22
23
24
25

41

62

42

63

£ or #

64
65
66
67

45

%

46

26
27

47
48
49

68"

28
29

69
6A
6B
6C
6D
6E
6F
70
71

4A
4B
4C
4D
4E

24
2B
2c
2D
2E
2F

4F -
5¢
51

31

72

52
53
54
55
56
57
58
59

32

73
74
75
76
77

34
35

36
37

78
75
7A
7B

38
39

5A
5B
5C
5D
5E
5F

3A
3B
3C
3D
3E
3F

7C
7D
7E
7F

R or Rubout

