
www.microtan.UKPC.net

1

Tansoft Two-Pass Assembler

Introduction

The Two Pass Assembler is an application that generates 6502 processor machine code. It is a

more sophisticated version of the Translator application in XBUG. With the Translator a line of

‘source’ code is entered at the keyboard and the associated object (machine) code is generated and

stored in memory. Once entered the source code is lost. The assembler keeps the source code and

provides facilities for it to be reviewed, edited, dumped to and retrieved from tape. The other most

significant difference is that the assembler uses labels (or symbols) to identify positions in the

source code or memory that can be referred to with many op code instructions. The use of labels

rather than actual locations means the code can be edited and/or re-located without the need to

update the defined locations. The use of labels is demonstrated in the following simple clear screen

subroutine:-

CLEAR LDX #$0

 LDA #’

LOOP STA $200,X

 STA $300,X

 INX

 BNE LOOP

 RTS

CLEAR and LOOP are labels. To call this subroutine using an Assembler, you would code JSR

CLEAR. The LOOP label, called by the branch instruction, is associated with the STA $200,X

instruction.

There are 5 assembler instructions that are not used in the XBUG Translator. These are BYT, WOR,

EQU, EPZ and ORG.

BYT and WOR are ways of defining data eg

DATA BYT $A,43,’C

Will generate hex 0A, decimal 43 (hex 28) and character C (hex 43) in locations DATA, DATA+1,

DATA+2 (wherever that turns out to be).

WOR does the same for two byte constants. It generates the LOW byte first and the HIGH byte

second so that:-

ADDR WOR $1234

Gives hex 34 in ADDR and hex 12 in ADDR+1.

www.microtan.UKPC.net

2

EQU, EPZ and ORG are different in that they do not cause any object code to be generated. They

are strictly directives to the assembler. Consider the following CLEAR screen subroutine:-

SCRTOP EQU $200

SCRBOT EQU $300

 ORG $1400

CLEAR LDX #$0

 LDA #’

LOOP STA SCRTOP,X

 STA SCRBOT,X

 INX

 BNE LOOP

 RTS

 ORG *+256

 JSR CLEAR

EQU stands for equate and tells the assembler to use address $200 whenever it encounters the label

SCRTOP. Similarly, use $300 for SCRBOT. EPZ (Equate Page zero) does the same thing for page

0 addresses. If you use EQU and EPZ, it is recommended to place them at the start of the source

code listing to aid legibility. EPZ must be declared before its label is used anyway (there is no

other restrictions on the orders of things). Note that SCRBOT could have been substituted with

SCRTOP+256 or SCRTOP+$100.

The directive ORG does not get translated into any code; what it does is to set the address at which

the next instruction will be stored. The directive is used at the program start in the source code

listing but can be used anywhere in the listing to locate successive code in defined locations.

The * in the second ORG directive acts like a label and means ‘this address’. In the above example,

the successive code will be placed 256 (decimal) bytes further on. * can be used with any

instruction eg BEQ *+4 means branch on equal to this address plus 4 bytes.

www.microtan.UKPC.net

3

Starting the assembler

Entry to the assembler is at $C000. On entry, the message

START=C?

is displayed. Key C <CR> for a cold start or just <CR> for a warm start. For a cold start, the

message

PRINTER?

is displayed.

If you are using TANBUG V2 or TUGBUG and have a printer connected, then initialise it using

<CNTRL P> or <CNTRL V> and key <CR>. If the printer is subsequently reset, it will be

necessary to key <CNTL P> twice to re-initialise it.

If however you wish to use your own routine, enter its hex address followed by <CR>. It will be

called when the print option is set with each character to be printed in the accumulator. See

Appendix B for example code.

The printer will remain inactive until the OP (Printer) option is exercised.

The next message displayed is

BLOCK GAP?

This enables the inter block gap used when dumping source to be altered. It will usually only be

necessary to key <CR> to set the default value of $F which equates to about 0.7 second. Inter

block gaps are inserted when dumping to tape to provide gaps for the processing of the data to take

place when assembling direct from tape. Should programs with a very large number of labels be

assembled from tape, it may be necessary to increase the length of the inter-block agap.

Assembler Screen

After initialising the assembler, the assembler screen is displayed. This is divided into three areas.

The top half is where the code listing is displayed. Below this are the user parameters. These

remain on the screen during all assembler operations and are explained below. The bottom three

lines are reserved for messages and data entry.

www.microtan.UKPC.net

4

User parameters

Action: Entry point for the two-character user command

Name: Entry point for stored Filename (max 6 characters)

Lin st: All source code lines are numbered. This shows the Source Code Line start number.

It is initialised at N0001 by the assembler but can be amended by the user to define the

start line number for assembly or file dumping.

Lin end: Shows the Line Number following the end of the current source code. It is updated by

the assembler editor and the Fetch File routines. It can be amended by the user to

define the start line number for assembly or dumping.

Sce st: Shows the start (hex) address of the source code stored in the memory. The default

set by the assembler is $400 but can be amended by the user

Sce end: Shows the end (hex) address + 1 of the source code stored in the memory. It is

maintained by the assembler.

Obj st: Shows the start (hex) address for the storage of the object (assembled) code in

memory. The default set by the assembler is $1400 but can be amended by the user

before assembly commences.

Obj end: Shows the end (hex) address + 1 of the object code stored in the memory. It is

maintained by the assembler.

Sym st: Shows the (hex) address of the start of the symbol (label) table stored in memory. It is

maintained by the assembler

Sym end: Shows the end (hex) address for the storage of the assembler’s symbol table. Note the

table is built backwards through the memory beginning at this location. The default set

by the assembler is $1FFF but can be amended by the user.

To update the User parameters, pressing <TAB> moves the cursor from the ‘Action’ data entry

point on the screen to each of the user-definable parameters relevant to the user command (which

has to be entered first). Keying <CR> will then action the command.

Assembler Commands

The assembler commands consist of the following:

Source Code Editing

Tape operations (dump, fetch and examine source code)

Code Assembly

Other miscellaneous commands (List Labels and Exit assembler)

For some commands, additional Options are available.

Source Code Editing

ES – Edit Source Code

To enter new source code, key ES as the Action. If you wish to alter the default source start

address, <TAB> to the source start parameter (Lin st) . The ES command is executed when <CR>

is keyed. A flashing cursor will appear at column 1 on the bottom line. This is where all editing

action takes place. The format of the editing line on the bottom of the screen is as follows:

Column 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 - - - - - - - - -

Editor Cmd Line No Sp Label (optional) Sp Op Code Sp Operand

The cursor will normally be aligned on column 7 ready for source code entry. <TAB> will

rotationally move the cursor round columns 7, 14 and 18. <BS> (Backspace) will clear the bottom

line and set the cursor at column 1 ready for a new editor command. <Cntrl L> and <Cntrl R> will

move the cursor left and right respectively.

www.microtan.UKPC.net

5

Source Code Formats

The label is an optional name consisting of up to 6 characters. The first character must be

alphabetic, the remainder alphabetic or numeric.

The Op Code is any of the standard 6502 op codes mnemonics plus EPZ, EQU, ORG, BYT and

WOR. For standard op codes, the operand may take one of the following formats:

Address - page 0, absolute or relative

Address,X - page 0, absolute or relative

Address,Y - page 0, absolute or relative

(Address),Y - indirect Y

(Address,X) - indirect X

#Constant - immediately

@ - accumulator (replaces A as used in XBUG)

Null - for other single byte ops

(Address) - for JMP indirect

Address can consist of:

a) a label or *, either with (optionally) + or – constant

b) a constant (giving a fixed address)

Constant can consist of:

a) $hhhh - where hhhh specifies up to 4 hex characters

b) 'c - where c is a single ASCII character

c) nnnnn - where nnnnn specifies up to 5 decimal numbers

Below is the complete list of the editor commands.

N <CR> Enter new code from line 1 (or as set by the user 'Lin st' parameter).

N n <CR> Enter new code from line number n

A n <CR> Amend line number n

I n <CR> Insert new code before line number n

D n <CR> Delete line number n

S n <CR> Show from line number n

<BS> Clear bottom screen line and set cursor at column 1

<LF> Exit from the editor

<TAB> Tab cursor to columns 7, 14 and 18

<CNTRL L> Move cursor left

<CNTRL R> Move cursor right

Key N <CR> to enter new source code. N0001 appears where 0001 is the start line number and is

automatically incremented as each line is inserted.

To enter new code at any valid line number, key N n <CR>. If this equals the end line number, then

new code is added to the end. If less than the end line number, then new code will overwrite any

existing code.

Commands A, I or D will show the existing line of code for the given line number as a checking aid.

If <CR> is keyed at this point (with the cursor at column 6), no changes are made. To amend or

insert a new line of code, key over the displayed line and key <CR>. It will be entered (if valid) as

www.microtan.UKPC.net

6

long as the cursor is past column 6. If deleting the displayed line, again move the cursor past

column 6 before keying <CR>

Whenever an insertion or deletion is made, the source code lines are renumbered. So if working

from a printed listing, consider working back from the end of the program so that earlier lines are

not renumbered.

To display lines of code already entered, use the editor's S command (Show). Key <BS> to clear

the bottom line ready for a new editor command followed by S1 for example (ie Show from line 1)

then <CR>. The first 8 lines of code will be displayed on the top half of the screen. The 'S' line

number on the bottom line will be incremented automatically so that subsequent lines may be

displayed by simply keying <CR>.

To exit the editor and return the cursor to the user 'Action' command entry point, key <LF>

(Linefeed).

Tape Operations

File facilities are provided for the dumping, examining and reading of source code. Object code

should be dumped and read using the usual XBUG file handling routines. Source code should

always be dumped prior to running an assembled program in case the program runs amok and

corrupts the source. The source code is compacted in store and on tape by the removal of

redundant spaces. The default speed for recording is fast mode. This can be set to slow (CUTS)

speed or reverted back to fast speed by selecting Option S (see below).

Files are output as a series of 256 (max) byte blocks. Each file is preceded by a label block

containing the name of the file, as taken from the user 'Name' parameter, and ends with an identifier

block containing a string of >>>>>>>>>>>. In order to preserve user RAM space, the file routines

use $200-$2FF as a buffer. Progress may therefore be observed in the top half of the screen.

DF – Dump File

The source code identified by the source start address parameter is dumped from the line start

number to line end number. This will normally be the complete program but you may alter the line

start and/or the line end numbers and only dump a portion of the code. There is nothing to stop you

having two or more sets of source code at different RAM locations (if you are careful).

EF – Examine File

This command should be used immediately after dumping to check the recording. A tick will

appear on the message line if the file is successfully found. Read or compare failures will cause

message code R to be displayed on the message line. The file should then be re-examined or re-

dumped. Escape from the read routines is possible by keying Control A but only if a block is

currently being read (ie a file header block is not being searched for).

FF - Fetch File

This reads the file identified by the name parameter into store at the address given by the source

code given by the source start parameter. The line start (=1) and line end parameters are updated.

Escape is possible using Control A as above. If there are read errors, R is displayed on the message

line. If failure persists, then the file is partly recoverable because only the block(s) in error will be

missing. To fully recover, it will be necessary to identify the missing lines of source code and re-

key them.

www.microtan.UKPC.net

7

Code Assembly

Assembly may be performed from source code held in store or, if space is limited, from tape

(dumped via the DF command). The following commands are used:

A1 – Assemble Pass 1 from store

A2 – Assemble Pass 2 from store

F1 – Assemble Pass 1 from tape

F2 – Assemble Pass 2 from tape

Before assembling from tape, it is advisable to first assemble from store as a means of fully vetting

the code. Although as much vetting as possible is done by the editor during code entry, certain

errors cannot be detected at this stage (eg labels not declared). If there is insufficient space in

RAM to hold the object while vetting, then output of object code can be suppressed using the N

option. Errors during assembly will cause assembly to terminate with the offending line displayed

on the bottom line. The error should be corrected and the program re-assembled. A list of error

codes is given in the appendix.

Before assembly the following user parameters must be correctly set:-

a) The source code start, line start and line end parameters although these are automatically set

by the editor and Fetch File (FF) command.

b) The object start address. Assembly code will be placed here unless overridden by an ORG

instruction.

c) The symbol table end address. This specifies where the assembler is to build its symbol

table containing the labels and their associated addresses. This table is built BACKWARDS

through store.

To access these parameters on the screen, type in the command A1 (but do not press <CR>) and use

<TAB> to move around the individual parameters.

After assembly (including suppressed object code runs), the end address + 1 of the object code and

the start address – 1 of the symbol table will be updated. You may therefore see if sufficient space

is available to hold the object. The assembler makes no other demands on RAM space above $400.

To list the labels, use the List Label (LL) command. This will display the labels and their addresses.

Options L (List) and P (Print) are also available – see below.

Options

Various options are available during assembly. Each is toggled on and off by the successive use of

the appropriate command. Active options are displayed on the screen below the message line.

Note that options L (List) and P (Print) are not available when assembling from tape because of the

time delay imposed by keying and printing respectively.

OL – List

During Pass 2 assembly, source and object code is generated on the bottom line of the screen and

scrolled to the top half of the screen. The list option causes this process to halt every 8 lines

pending the keying of <LF> so that code can be examined. <CR> will switch off the option and

allow the assembly to complete uninterrupted. Note that because of the limited screen width, the

source appears on one line and the object on the next. The cursor character is used to generate CRs

www.microtan.UKPC.net

8

for printing where source and object appear ion the same line. This option has the same effect

when listing labels.

OM – Multi-part

This allows the consecutive assembly of several sections of source code. Its effect is to inhibit the

resetting of the object assembly address on assembly. It also inhibits the clearing of the symbol

table prior to Pass 1. Suppose there are 3 files of source code on tape which constitute one program.

To assemble these as one object program, perform the following:

a) F1 on the first file as normal

b) Set option M and F1 on the second and third files

c) Clear option M, rewind the tape and F2 on the first file

d) Set option M and F2 on the second and third files

Assembly is now complete.

OP – Print

Causes the source and object to be printed using the Print routine set up during the cold start. This

will either be the new TANBUG V2 routine or one supplied by you. It is called with each character

to be printed stored in the accumulator. <CR> ($0D) indicates a new line. It is necessary for user

routines to save both X and Y registers. It also causes the label list to be printed for the LL (List

Label) command.

ON – No Object

This suppresses the storage of object code. It has no other effect.

OR – ROM assembly.

This allows programs to be assembled for subsequent EPROM or PROM programming. In this

mode ORG will determine the object address for assembly purposes whilst the object start

parameter determines the object’s storage address. At the end of the assembly, the object start

parameter will be updated to show the END address of the stored object whilst the object end

parameter will show the assembled end address.

OS – Slow

Toggles Slow (CUTS) and Fast mode for tape recording or reading.

Miscellaneous Commands

LL – List Labels

To list the labels, use the LL (List Label) command. This will display the labels and their addresses.

Options L (List) and P (Print) are also available with this command.

EX – Exit

To exit the assembler and return to the monitor (TANBUG), use the EX command.

Warm Starting

A warm start allows entry to the assembler with user parameters as previously set. However, this

depends on certain locations not corrupted in the meantime. These locations are:

£40 to $ 43

$62 to $73 : start and end line numbers. Source, object and symbol table start and end addresses

$FF

www.microtan.UKPC.net

9

Additional Notes

Interrupts are disabled when in the assembler.

Certain extra Op codes (MDF, MEM and MAC) are accepted by the assembler. This is to facilitate

the eventual inclusion of macro facilities. They will be treated as WOR. Labels including the

characters [\] are also allowed but should not be used as they will have special significance to the

macro assembler.

www.microtan.UKPC.net

10

Appendix A – Error Codes

General

File on tape found (not an error condition)

C Invalid assembler command

G Start line number greater than end line number

N Line number does not exist

R Read or compare failure when reading from tape

Editor

A Argument (line number) to command required

E Edit command invalid

N Line number does not exist

Assembler

A Addressing error (eg label not declared)

C Constant is invalid

D Double byte operand wanted

I Invalid operand

K Label not allowed in label field

L Label wanted in label field

O Op code is invalid

R Reconciliation failure (probably caused by failure to pre-declare a page 0 label or a symbol

table corruption)

S Single byte operand wanted

 Offset too large for branch instruction

 A page 0 address calculated (less than $100) for EQU

 A two byte address calculated (greater than $FF) for EPZ

 Label not previously declared

X Duplicate labels

www.microtan.UKPC.net

11

Appendix B – Printer Routines

0001 INIT LDA #$FF 1400 A9 FF ; Initialise 6522 registers

0002 STA $BFE2 1402 8D E2 BF ; set ports to output

0003 LDA #$A0 1405 A9 A0

0004 STA $BFEC 1407 8D EC BF ; set pulse output mode

0005 LDA #$7F 140A A9 7F

0006 STA $BFEE 140C 8D EE BF ; disable all interrupts

0007 RTS 1407 60 ; return

0008 CMP #$0D 1410 C9 0D ; check carriage return?

0009 BNE PRCHAR 1412 D0 08 ; no – skip to print character

0010 STA $BFE0 1414 8D E0 BF ; yes – process it

0011 JSR WAIT 1417 20 IF 14 ; wait printer until ready

0012 LDA #$0A 141A A9 0A ; load Line Feed character

0013 PRCHAR STA $BFE0 141C 8D E0 BF ; send character to printer

0014 WAIT LDA $BFED 141F AD ED BF ; wait routine

0015 AND #$10 1422 29 10 ; check control line 1 flag

0016 BEQ WAIT 1424 F0 F9 ; printer not finished

0017 RTS 1426 60 ; return

Data Direction Register (DDRA / DDRB)

Set all peripheral pins to output

Peripheral Control Register (PCR)

Set Control line 1 for negative active edge

Set Pulse output mode

Interrupt Enable Register (IER)

Disable all interrupts

Interrupt Flag Register (IFR)

Check Control Line 1 Flag

I/O Socket A1 B1 C1 D1

6522 A2 A2 B2 B2

DDRA / DDRB $BFC3 $BFC2 $BFE3 $BFE2

Initialisation value #$FF #$FF #$FF #$FF

PCR $BFCC $BFCC $BFEC $BFEC

Initialisation value #$0A #$A0 #$0A #$A0

IER $BFCE $BFCE $BFEE $BFEE

Initialisation value #$7F #$7F #$7F #$7F

IFR $BFCD $BFCD $BFED $BFED

Control line 1 flag #$02 #$10 #$02 #$10

www.microtan.UKPC.net

12

