SN
- PG
Tarn

TANGERINE USERS GROUP

ANKICCOIN
TOOLEIT VI |

. NC NLD S
= 2 . N L

4

% "’
ANIICCOIIIN

>
v.?.
N

"1

+

INTRODUCTION

The Video Toolkit has been designed to accompany the Video 830/82 Module as an
interface between machine code efficiency and the Basic interpreter language. The
facilities offered in this package greatly increase the overall operational speed ratio
between the Basic interpreter and the Video Module, subject of course to efficient
programming techniques. Furthermore experimentation on existing programs has
produce a remarkable reduction in overall program size, up to thirty percent in some
cases.

INSTALLATION
The Video Toolkit has been provided in 2716 2K Eprom format for a resident address

on Tanex at SE800 - SEFFF Socket E2. Insert the eprom ckecking for correct
orientation of Pin 1. to socket Pin I..

INITIALISATION
Enter the Basic interpreter in the normal manner and input the following 'User Call'.
POKE34,0:POKE35,232:X=USR(I) *

The Toolkit will now activate and clear the screen automatically and respond with its
signing on prompt at the top of the screen. The Toolkit commands are now available
either in direct command mode or from programming. Subsequent 'Warm' starts will
not require this procedure,

TEST

Enter the following:-

#CLS (CR) : Clear Screen Cursor Home

With the Toolkit now activated, turn to any of the enclosed sample programs and
enter the listings as shown. These will allow you to observe the Toolkit in action
belore commencing any further.

NOTES:-

1. When the Toolkit has been initialised it will automatically modify the locations in
the Basic interpreter within the 2K block SE000 - SE7FF to allow use of the Basic
Line Editor with the Video Module (See under System Configuration).

2.All commands are prefixed by the '#' symbol, this syntax being retained from other
Toolkits routines due to our existing familiarity with its use, its main purpose being to
serve as an identifying label of the Toolkit commands.

Commands followed by 'T* are software toggled.

-2-

GRAPHICS CONTROL GROUP

SET x,y

It is assumed for this and other graphic commands that the full VDU 80/82 16K
512x256 display is in use.

The syntax is exactly as shown. Brackets are not required and spaces between the
command word and its parameters are 'Don't Care' conditions. Full error checking is
carried out by the firmware and the range of x and y is the same for these
commands:-

RANGE :- 0= :<= 1, 0=y=125

x and y may be any valid Basic numeric variable, real or integer. N.B, Real variables
will be rounded.

Error reporting :- ILLEGAL QUANTITY if x or y are outside the specified range.

Function :- Turns on the point at the specified co-ordinates irrespective of existing
state and makes x,y the current graphics pen position. Note that the final command
string is not sent to the VBUG Silo until it is free of errors therefore preventing hang
ups due to incomplete commands.

RESET x,y
All comments for SET command apply here also.

Range :- As in SET command.
Error reporting :- As for SET command,
Function :- The exact reverse of the SET command.

INSET x,y
Prefix IN stands for INVERSE. Comments as for the SET command.

Range :- As for the SET command.

Error reporting :- As for the SET command. Function :- Depends on the exsiting
condition of the specified point. If already ON, will perform a RESET function. If
already OFF, will perform a SET function.

DRAW xy

Comments as for the SET command with the addition that programmers should
note that no track is kept by the Toolkit as to current position of the graphics pen,
This would have consumed too much 0 page usage in memory which is not available
with BASIC in residence. However, if the fact that VBUG keeps a track is borne in
mind, then this should cause little problem,

Range :- As for the SET command.

Error reporting :- As for the SET command.

Function :- Draws a line from current "pen" position to a point specified as arguement
irrespective of current state of potential line.

-3

UNDRAW x,y
Comments as for DRAW command.

Range :- As for DRAW command.

Error reporting :- As for DRAW command.

Function :- Erases a line from current "pen" position to specified position
irrespective of current state of the potential line.

INDRAW x,y

Comments the same as for DRAW with the addition that it performs rather like
the INSET function does, but on line. Can sometimes be faster than UNDRAW

Range :- As for DRAW command.

Error reporting :- As for DRAW command. Function :- Depends on the existing status
of the projected line. If ON performs an UNDRAW function. Then OFF performs a
DRAW.

TEST x,y
Comments as for SET command.

Range :- As for SET command. Error reporting :- As for SET command.
Function :- To report back the status of the specified point. Answer is left in Loc.SEE
or 238 Dec. If PEEK(238)=1 then point was set, 0 otherwise.

MOVE x,y

Comments as for SET command.
Range :- As for SET command.
Error reporting 3= As for SET command.

Function :-To move the graphics "pen" to a new position. N.B. does not SET the new
position.

CURSOR CONTROL GROUP.

CLS

No Range or Error reporting to consider! Performs a Clear Screen/Cursor Home
function. N.B. Does not clear the Microtan screen.

HOME

Performs a cursor home function (top left corner) on the VDU 80/82 screen
ONLY.

UP,DOWN,LEFT,RIGHT.

Performs the obvious ! Note that ™" is not always necessary to maintain PRINT
formats on the VDU 80/82 screen.

WINDOW lojhi

Defines a scrolling window on the VDU 80/82 Screen and if currently outside that
window, will home the cursor to the top left corner of it.

Range :- (0 lo (= 23)((0%- hi = 28)

Error reporting :- ILLEGAL QUANTITY if any of the above conditions are not
satisfied. N.B, lo can NEVER be greater than hi.

Function :- Sets the scrolling window to between and including lo and hi. Also sets up
g locations on 0 page as to current window status for use by CURS command, (522 &
23)

CURS row,col

This command was probably the most complex to get right, as a number of other
situations have to be checked before the text cursor can be moved to the new
position. Rest assured that it is fully error trapped and, for instance connot be moved
to position 60 on a %0 col. screen (WIDTH2) nor can it be moved to row 18 in a
scrolling window between 20 & 24,

Range :- Depends on the width of text, but in general 0(zrowd=79 , 0{=colz28 ,
Error reporting :- ILLEGAL QUANTITY if either co-ordinate is out of range for

current text conditions.

Function :- To move the TEXT cursor to the specified position for printing inside

current window only. On initialisation WINDOW defaults to 0,28 and width to 80

columns, Uses 0 page Locs. $22,523 (window status lo,hi) and SF7 (current text width)

for error trapping. For your convenience a table of text sizes/columns follows :-

WIDTH..cicrivirerennnnns COLUMNS

Lessssessrssnsasernasneesld = 79
 SUC———— I L)
. B m— R

Hocrrasssososnsssserent) = 29 ()

R —— I []

N.B. Widths 2 and & are not misprints. Count the line lengths yourself !

General comments on CURS control: Note that Basics PRINT char. counter (530) is
not alfected by any of the above commands.

TEXT CONTROL GROUP

WIDTH n

Not much to comment on, except to say that n=0 is valid but the same as n=1.
n=6 will generate an error.

Range :- 0 ns5

Error reporting :- ILLEGAL QUANTITY if out of range.

Function :- To change to new character size and line lengths. The use of this
command

changes WIDTH status byte at $F7.

SPS (Superscript)

Purposely short in its syntax as it will be most used in a text line before a print
statement.
Function :- To raise the next letter in the text up half a line. Only valid for one
letter.

-5-

SBS (Subscript)

Same comments as for SPS

Function :- To lower the next letter in the tex statement. Only valid for one letter.

LU (Line Under)

Syntax is awkward but necessary because of conflicting command names. This
command and the next (RVS) work like toggle switches. That is to say that they
change the existing status of the relevant function.eg. If underlining was OFF when
the cgrnrnand was issued then will turn it ON, and vice versa. Soft toggle for LU is in
Loc. SF9.

Function :- To turn undrelining on and off. Changes current state:- when $F9=1
underlining is on. when $F9:0 underlining is off.

RVS (Text reverse video)

Same comments and functions as for LU except soft toggle in $F8.
MISC. GROUP

SYS n

In this implementation and because 0 page storage is at a premium, when the VDU
Toolkit is initialised the USR function in BASIC is disabled and replaced by the more
powerful SYS command. (This releases 2 Locs for toolkit use in O page.) This is of no
detriment to BASIC as the jump vector it uses, starting at $21, which normally
contains a JUMP (#4C) instruction, is simply replaced by a RTS (#60) inst.; the
following two locs being set to WINDOW default of #0,#18(2¢ dec). Issueing a USR
command in Basic will cause NO action 10 occur, just as if it was not there. This
being one of the most useful commands from the PGM Toolkit, its use is exactly the
same and causes a jump to a user M/C subroutine which must end with an RTS (#60)

instruction.
Range :- 0(=n{=65535
DEC and HEXS FUNCTIONS
As before they may both be assigned 1o their respective variable types and used

in a program if required. Note that their arguement must be the correct types and
enclosed in brackets,

-6-

BASIC EDITOR FOR VDU 80/82 SCREEN

Two methods were considered at the inseption of this part of the package. The
first was to make the Editor totally VDU 80/82 based as a "List it then uses cursor
control” type editing with information travelling both ways between the Basic and the
VDU card, The second method was simply to copy the edit buffer off the Microtan
screen and then whenever a change was made to make sure it got recopied back to
the VDU screen using the VBUGs built in cursor control command to keep VBUGs
cursor in step with Microtans. There are pros and cons for both methods, but the
biggest consideration against the first method eventually swayed me towards the
second method. For all the video cards speed, we are still with a host CPU that is
running at only 750KHz and to do a bit test in order to recognise alpha characters
and numbers using a look up table would have slowed things down to an unacceptable
level.

S0, the second method was settled on. There was still one consideration against
this method, but, in the event it proved relatively simple to cure. the Microtan edit
buffer works over three lines of the screen and it also uses cursor up and down
commands. As we can get a whole line of Basic text on one line of the VDU 80/82
screen, these commands become redundant. However | did mention that we also have
to keep the two cursors in step for the editing to be correct. Answer? - Make the
Microtan cursor keep going right instead of stopping at the end of the line. je.go to
thesunolthemmllneorgobnd(wtheendofﬁnpreviomumwhenmjng
cursor right/left eic. This done, it is simply a matter of performing the necessary
conversion for cursor control (up & down are not implemented) and then the copy
routine whenever a character is changed or deleted.

The result is that when you type in a line number for editing and you press
CONTROL E, up pops that line on the VDU B80/82 screen with the cursor flashing
away in iront of the number as usual. From then on everything is as you have always
been used to and ALL commands, except CONT U & CONT D, are valid.

Only two things need to be considered as danger areas. As you have been used 10
using CONT U & CONT D for so long now and because the EDITOR will still work in
the 40 column mode, the temptation 1o go down to the other hall of the line may
cause an accidental use of the aforementioned CONTROL codes which will immediately
result in the cursor going out of step. There are only two ways out of this problem
without causing damage to your programs. One, always use WIDTH! when editing or
two, if already in trouble, hit BREAK/CONTROL C which will abort without damage,
whereupon you may re-enter EDIT mode having set up WIDTHI first 1!

One final consideration in this section is that because the Basic Editor is primarily
a screen based device, on the Microtan screen, then due consideration will have to be
made as to where the cursor is on the screen prior to editing. Again there are a
number of solutions but perhaps the best two are either hit CONTROL L {irst .
whereupon all your editing will appear on the top line of the VDU screen, or secondly
s LIST a few segments of your program on the screen having done a CONTROL L
first, then BREAK out of the listing and go into your chosen line of editing. Both
methods ensure that the cursor on the Microtan screen is out of harms way before
going into EDIT mode on that screen also. The latter method is prefered as i1 allows
the user to look at the program as it was before editing, whilst he is editing. Finally
ESC and LFEED are still valid and will allow stepping thruogh the program as normal,
although only the line actually in the edit buffer will be displayed. If the insertion of
a letter seems slower than you have been used to, then blame the Microtan 65 not me.

-7

SYSTEM CONFIGURATION-

Certain hardware considerations will be discussed. Firstly, if you haven't yet
converted your EPROM space on TANEX to RAM yet, then get it done without delay.
It's been the subject of a number of articles in the TUG newsletters and is really
quite easy and reliable. The reason | single this conversion out is very simple. If
your's is still all ROM space then you are not going to be able to take advantage of
the next part of the Toolkit, and thats the EDITOR. The reason being that certain
routines in the BASIC EQ chip have to be redirected to get the VDU screen to show
us what's happening with the EDITOR. These routines are re-vectored during the start-
up part of the Toolkit but do NOT affect the overall operation of the Toolkit in any
way. Simply, if your EO chip is not RAM then you will lose the EDITOR facility from
the Toolkit. This will not affect the EDITING on the MICROTAN screen at all, which
carries on as normal.

Finally, the last hardware consideration to make is that the Toolkit, on startup,
interogates the VDU ports (STATUS & COMMAND Registers) which must be at
$BED0,SBEO1. Further, the VDU card must be plugged in or else the Toolkit will just
pass control back to BASIC without any initialisation at all. There's no point in trying
to control a board that isn't there, is there! A point of intrest is that the author's
system has a very small extra bit of software (about 7 bytes) tagged on to the top of
Basic which checks to see if a Toolkit (VDU or PGM) is in residence in RAM at SE800
up, by looking for a #4C byte. If found, Basic automatically initialises any toolkit
alsol This will be the subject of a future small article in the newsletter as an
extension to the XBUG mods. When implimented it makes for a nice tidy start up
procedure,

Basic editor functions completely as normal and all normal commands to the
editor are valid with the exception of CONTROL U and CONTROL D. What appears
on the VDU 80/82 screen is a carbon copy of what is happening on the Microtan
screen actually in the EDIT buffer (Micro lines 6,7 & 8) only. Should you wish to fully
commit your system to the VDU 80/82 screen in Basic, then it is now possible and is
the only way of not using RAM in order to use the EDIT facility. However it will
involve permanent changes to the afore mentioned jump vectors in chip at SE000.
Further, if these vectors are changed then the VDU 80/82 Toolkit will have to stay in
permanent residence too. Watch the newsletter for greater details.

Note:- There is a special edition of the VDU Toolkit for use with the Tandos Disc
System - Contact us for further details.

The Manufactures assumes no responsibility for the use of
this firmware package, nor any infringesents of patents or
other rights of third parties which would result. No part
of this firaware package say be copied or reproduced in any
way whatsoever without the prior written permission of the
MM AU A s ssanis s assvsunsssnilia e T Nsssteiansesssiss
Copyright (C) Tangerine Users Group Ltd. 1983.

10
20
30
0

SAMPLE PROGRAMS

REM SPIRAL BOX

POKE 34,0:POKE 35,232:X = USR(1)
#CLS:A=0:B=255:C=510:D=0
#MOVEA,B

50 FOR 1=0TO255
60 #DRAWA,B
70 #DRAWC,B
* 80 #DRAWC,D
90 A=A+35:B=B-5:C=C-5
100 /DRAWA,D
110 D=D-5
120 NEXT 1

REM LACE POLYGON

3 POKE34,0:POKE35,232:X=USR(l)
6 DIMMX(38),MY(38),DX(38),DY(38)

10
20
30
35
50
60
70

10
20
30
L0
50
60
70
80

#CLS:PW=3.151592654/180:R=127:R 1 =192:C32256:Cl4=R:T=-10

FOR J=1 TO 38:T=T+10:L=T*PW:MX(J)=SIN(L)*R 1 +C3:MY(J)=COS(L)*R+CH:NEXT
U=0:FOR =1 TO 38:U=U+10:K=U*PW

DX(D=SIN(K)*R1+C3:DY(N=COS(K)*R +C4:NEXT

A=1:B=38

FORJ=1TOB:FORI=ATOB:/MOVEMX(J),MY(2): DRAWDX(1),DY:NEXTI:A=A+1:NEXT]
GOTO70

REM SPIRAL PERSPECTIVES

POKE34,0:POKE 34,232: X =USR(I)

#CLS:A=0:B=255:C=510:D=0

#MOVEA,D

FOR 1=0 TO 255 STEP 5
'DRAWABS{D-C),ABS{B-—A}:'DRAW)\BS{D-C),B:'DRA"ABS(D—BJ.D
AsA+5:B=B-5:C=C-5

#DRAWA.B

100 NEXT 1

LIST

S REN VDU DEMONSTRATION

10 #CLS

20 PRINTCHRS (27) *[3w"CHR$ (27) "[1u®
30 PRINTCHR$(27)"[4;10cT H E"

40 PRINTCHR$(27)“(7;BcT . U . B°

30 PRINTCHR$(27)"(10;8cv I D E O*

60 PRINTCHR$(27)"[13;6cT OO L K I T*
70 PRINTCHRS (27)"[16311c] N*

Cont:
9.

-~

BO PRINTCHR$(27)"[19;7cAC T 1 D N*

S0 PRINTCHRS (27) "[1w"CHRS (27) "[Ou" : #h: FDR 1=1TOS000: NEXT

100 uu.s:sosmzo:v-zss:rm:-mmsrm:mmux.v:sosumzo:n:nnmmm
110 FORX=S04TOOSTEF~8: #DRAKYX, Y: BOSUBI30: NEXTX: BOT0140

120 WMOVEO, 0: RETURN

130 #MOVESO4, 0: RETURN

140 GDSUBI303V-ZSS:FERI'OTMSTEPS:lMl.?:mlM:ElTlsmli’O

150 FORX=S04TDOSTEP=-E: SUNDRAKX , ¥: GOSUB]20: NEXTX

160 PRINT"What did you think of that then' ? All in & lines of prog too ''*
170 PRINT"(and it only took 22 secs, which is about | sec slower than M/
180 FORI=1TO3000: NEXT: DIMXZ (1000) , Y% (1000)

190 PRINT""Ang on @ mo while Eric works a few things out,....*

200 PRINT"(It’s the BASIC you know... So bloody slow at aritheetic '!')*
210 mx-:rmooo:nm-sutmum:nm-m:muuumxnom

220 PRINT" Right. NDK WATCH THIS FOR SPEED ''":#h

230 rnn:-nmooo:caantn,n.umtn

240 PRINT® That was 1000 plots using the #SET command.NOW WATCH THEM BD *'*:#h
250 FOR1=1000TOISTEP-1: #RESETX% (1), Y% (1) :NEXT
260 PRINT"THAT WAS THEM ALL GOT RID OF USING THE WRESET COMMAND. NIFTY HEY '7*
270 PRINT:PRINT*BUT YOU AIN'T SEEN NOTHING YET ''*

280 PRINT"Remember those little routines in the PGM Toolkit manual 7*

290 PRINT*Well cop a butcher's at the speed of this....'"

300 FOR1=0TOS10STEPS: X% (I)=1:Y%(1)=128+1008SIN(&. 2801 /255) :NEXT
SCLS:PRINT*READY ? Don’t blink or you "11 miss it ''*:FORI=1TO2000:NEXT
#HMOVEXZ(0), YZ(0) : #CLS: FOR1=0T051 0STEPS: #DRANXZ (1), Y% (1) : NEXT

PRINT*Not bad hey ' Hang on a mo while 1 get rid of ite...yamun !
FORI=1TO2000:NEXT
lHCNEl'I‘OJ.Ylwl3F(HI-OTDSIOBYEP!=WH¢I},“UHE“
ACLS:PRINT"RIGHT, Let’s try the next. (with a little twist '")*
#MDVEZSS, 150: FORT=0TDA3: XX (1) »245+808C0S (1/10) : Y% (1) =150+1. 2582085 IN(1/10)
lEl?tFmIIOTMS:OMI!H).ﬂllhﬁfﬂalﬂlﬂ#ﬁ.lﬁtlmis.so
#DRAK215, 0: #MOVE245, 50: 4DRAK2TS, 01 §HOVE24S, 100; SDRAK21S, 60: #MOVE24S, 100
#DRAK2TS, 60: #MDVE2TIS, 140: RDRAN2SS, 140: BDRANZ60, 145; MMOVEDTS, 140
BDRAUZIO0, 145: ¥MDVE24S, 146: KDRAN2AS, 150: #MOVEZ30, 152: NDRANZ34, 152
$HOVE260, 152: $DRAK2SS, 152

#h:PRINT"Yes it's our very own ERIC '' Come to see us *'! ad
FOR1=1TDA000: NEXT

PRINT"But enough of this clowning around.”

PRINT*Let’s go out with a fanfare and.....":FDRI=1TO3000:NEXT: N0LS
PRINT*WHAT'S THIS !! Something’s coming into land at BAY 14 '
FORI=1TDA000: NEXT

|m0,l21.mu,12:'“!!.10:!&%,!0:.“,]2

#MOVES20, lzaomu.usquv,ﬁumss, 155: WDRAN4A4S, 155

#DRAWAS 1, BS: #MOVEAST, b6: #DRAWAA0, 12

WDRAWASE, 12: 8DRAWAS] » 662 WMOVES4T, BE: WDRAK4S4S, 153 #DRAWETS7, 153: ADRAWAT] , 94
#HMOVE428, bb: WDRAMA22 12

#ROVESD, 170: aDRAKIOS, 170: #DRAWA4E, BO: #DRANIOB, BO: 8DRANSO, 170
|mo.1?3=|nm304.1n:um3u.:7o:mm,:num4a.es
WHOVE44B, 83: #DRAW4A4E, 70: #DRAW3O0B, 70: #MOVES08, BO: EDRANIOB, 70

#DRAKT19, 66: #DRAWAST, b5: NDRAKASE, 70: WMOVE4SY, bb6: #DRANSSS, B3
#DRANS4E, BE: #DRANALT, BB: #MOVES48, BO: #DRANASY, 75

PRINT"Y ES ! ! IT'S THE.........":FORI=1TOS000: NEXT
PRINTCHRS (27) *[1u*CHRS (27) " [3w"CHRS (27) *[10;11cV D U*

610 PRINTCHR® (27)*[12; 14¢B © /"

620 PRINTCHRS (27)*[14;17cB 2*CHRS (27) *[1w"CHRS (27)"[0u": #h: ¥Do: Do

630 POKE1,0:WAITY, 255: RUN
Dik.

S3838055525808 8 Uys

w
—
(-]

338384588

COMMAND SUMMARY

SET x,y - Turns on specified point

RESET x,y - Turns off point specified by SET.

INSET x,y - Turn on or off point.

DRAW x,y - Draws line from current pen position to x,y.
UNDRAW x,y - Erases line from current pen position to x,y.
INDRAW x,y - Performs either Draw or Undraw.

TEST x,y - Reports current status of point.

MOVE x,y - Moves graphics pen to specified coordinates.
CLS - Performs Video clear screen, cursor home.

HOME - Performs cursor home,

UP, DOWN, LEFT, RIGHT, - Cursor movement.
WINDOW lo,hi - Defines scrolling window.

CURS row, col - Defines cursor position.

WIDTH n - Defines character size 1-3.

SPS (Superscript) - Sets SPS mode.

SBS (Subscript) - Sets SBS mode.

LU - Sets underlining mode.

RYS (Reverse Video) - Stes reverse text video.

SYS n - Replacement for USR() command.

DEC - Decimal to hex.

HEX - Hex to decimal.

ADDENDUM
RENUMER ’
#RENUMBER (Start),(Step)

This command renumbers a Basic program from value Start in increments of Step.
The parameters Start & Step are optional, and default to 100,10.

Example:-

#RENUMBER100,10 ; RENUMBER from 100 steps of 10
YRENUMBER200,10 ; RENUMBER from 200 sieps of 10
§RENUMBER200,5 ; RENUMBER from 200 steps of 5

All GOTO, GOSUB and THEN statements are correctly reset. If a non-existant
number is found, the reference is set to 36767, thus enabling it easily found.

VIDEO 80/82 MODULE - DRIVER ROUTINE

The Video Toolkit uses the Video driver routine present in Tugbug, the routine
described in recent newsletter articles. This routine can easily be incorporated in
exsisting Tanbugs (Eproms) and is recommended for future use.

If the currem Tugsbug monitor is in use, entry is assumed to be through the jump
vector at location SF82F, this method disregards the flag in byte $C and passes a byte
using the following code:-

SENCHR: BIT VDUSTA ; CARD STATUS

sessees BPL SENCHR ; BRANCH IF NOT READY
«sssses STR VDUCTL ; PASS BYTE TO VIDED
esssses RIS sueves 3 RETURN TD CALLER

.0,

FBEB o0

FBEE 10 FB .. BPL SFBEPR
FBFO

FEF3

