FORTH
PROGRAMMING
MANUAL

ORIC—-FORTH

Contents

Introduction
1. The Source Tape
The Fouri{th) Fundamentals

Getting Going with some Examples

W oN

Editing and Creating Source Programs

S

!

An example Program — a PRINT UTILITY
DISC handling — Program and Data Storage
Forth Dictionary Structure

The Code Field and What it Does -

© » N @

Creating Machine Code Words

Appendices: A. ERROR MESSAGES
B. USER VARIABLE TABLE

C. SAVING AN APPLICATION
PROGRAM

D. CONTENTS OF CASSETTE
E. ASSEMBLER

The Full Glossary of Instructions, and Overview

@ Copyright 1983 Tansoft Limited.

INTRODUCTION

EORTH was created by Mr. Charles H. Moore in 1969 at the Mational
Radio Astronomy Observatory, Charlottesville, Virginia, USA, It was
creasted out of dissatisfaction with available programming tools,
especially for observatory automation.

Mr. Moore and several associates formed FORTH Ine., in 1973 for the
purpose of licensing and support of the FORTH operating system and
Programming Language, and to supply application programming to
meet customers requirements.

This version of FORTH is that issued by the Forth Interest Group (FIG)
which is centred in northern California. The group was formed in
1978 by FORTH programmers to encourage use of the language, and
interchange of ideas through seminars and publications.

FIG issue a language model, and code implementations for a2 number of
processor types, the publications being in the public domain; however,
each requires customisation to a particular target system. Customised
installations are the property of the customiser, who then holds copy-

right for his/her particular version,

‘This handbook does not set out to be an exhaustive text-book on the

language, merely an introduction to its use, and a general description
of the internal workings. Users seeking further information of FORTH
may like to consider joining the Forth Interest Group, whose address
is: P.0O. Box 1105, San Carlos, California 84070, U.5.A.

FIG hold a number of books, some of which may be pi.ll“l:hﬂﬁﬂ'& in
this country through bookshops, and they should be happy to send you
a membership form/publications list,

A good book now available is ‘Starting FORTH', by Leo Brodie,
published by Prentice-Hall; though this is based on polyFORTH®,
which has some differences to figFORTH.

*polyFORTH is a trademark of FORTH Inc.

The Source Tape

Thank you for purchasing this Forth package for your Oric 1 computer
system. We hope you will get both pleasure and an improved knowledge
of programming techniques out of this unusual language.

The first thing to be done.is to load the Forth program into your Oric,
MNote that all this is done simply by entering: CLOAD "FORTH".S,
the files on the distribution tape have been recorded at the slow speed
to ensure that you can read them reliably. If you wish you could make
your own copy at the fast speed, how to do this will be explained later,
Forth will take about 10 minutes to be read in.

Onee the program has been loaded you can enter Forth by typing CALL
#400 {Return). |f you accidentally fall back into Basic (for example, by
pressing the Resetbutton) you can re-start Forth without losing all your
work with: CALL #404 (Return)

On entering Forth you wil! be greeted with the messzge: ORIC—-FORTH
V1 OK. You should then enter the command: EMPTY-— BUFFERS
(Return). This command initialises the cassette buffers (explained later
on}. Failing to do this may result in 1/0 being blocked.

If you now type VLIST, Forth will list out every command [or word)
that it can understand. Control-C will stop it for you.

Alsno try the following: 2 3 * . [(Return) Putting a space between each
item. The answer 6 should be printed to the right of the dot. What you
have done is to give the Forth interpreter two numbers, 2 and 3. These
are pushed onto the stack as they were entered. The ™ {multiply}
operator then multiplies these two stack entries replacing themn with the
answer on the top of the stack. Finally the commard '." (Dot] takes the
number on the top of the stack and prints it on the screen.

If vou now type {. CR } ie. the instructions inside the curly brackets
vou will get the.error message "EMPTY STACK' since there should be

nothing there to print.
Cassette 1/0

FORTH is designed to work with disc memary for bulk storage, where
the dise is handled to provide virtual memory. This means that the disc
Innks as though it is an extension of normal memory., The FORTH
method is to imagine the disc as consisting of 1K byte blocks numbered
from O to N, the capacity of a disc. If the user requests that BLOCK 3
is to be ‘used’, then this block of 1K is fetched from the disc into a buffer
in RAM. If the BAM buffer giready contains another block from disc,
then the RAM buffer is written back to disc before the new block is
fetched. (Actually it is only written back if it has been modified).

In this simple manner, the whole of the disc is accessible in a direct
manner, quick and simple to use. If the user requestsa block it appears
in the buffer. The fetch/rewrite operations are automatic, and are carried
out by a group of FORTH Words collectively known as the Forth Virtual

Disc Manager. :

These 1K byte blocks are also known as SCREENS because they can
be displayed (on normal VDU) as one screen full, 16 rows of 64
characters. This is not quite true for the Oric!

Oric Cassette Adaption

To allow a similar system with cassette which neither sacrifices the speed
and flexibility of this mechanism, nor makes this version of FORTH in-
compatible with a future update to disc, the following method has been
used. :

A 7K byte block of RAM has been reserved-asa ‘micro-disc. The normal
disc manager routines pretend this 7K hlock is a disc and they fetch/up-
date 128 byte sectors of the normal disc buffer.

The cassette commands now load, ar':d save the 7K microdisc in units of
1K SCREENS, which can be manipulated by Forth in the usual way,
with no restrietion on whether they contain source text, data, or what-

ever the user wishes.

Cassette Commands

CLOAD loads 1K Screens from tape to the ‘micro-dise’ buffers. The
start and end screen number must be on the stack, for example:

1 3 CLOAD CR loads Screens 1, 2 and 3 from tape.
1 3 CSAVE similarly dumps them.

SPEED is a variable 1o control the tape speed.

Storing O here sets FAST

Storing 1 here sets SLOW

For example:- 0 SPEED ! [CR] sets fast

Note that CLOAD, CSAVE, and SPEED are like all FORTH commands
and can be invoked either from the keyboard, or from within a program.

The full contents of the cassette are listed in the appendix.

Chapter 2
The Four{th) Fundamentals

These are as follows:

* The two stacks
* Post-fix notation
* The Dictionary
* Virtual Memory

Before getting to grips with the language it is essential to have a grasp
of each of the above ideas. |f you have used a Hewlett-Packard caleu-
lator, the first two items will be familiar.

The Stacks

FORTH maintains two push down stacks of numbers — last in, first
out type. These may be pictured as a vertical spring loaded rack. As
you push a new item into the rack, you push down all the existing items
that are in it, putting the new one on the top. Taking the top item off
then lets all the others ‘POP UP’ to reveal the next item available.

This Is illustrated in Fig 1, Itis very important to notice that the most
RECENT item added is the FIRST one out again,

TOP_ PUSH DOWN POP P POP LP

[3 10 3 4 | -TOP-OF-SIACK
4 3 4 5]
5 4 5

| 3 |

Start Pushanew Remove Remove

Fig. 1. A push-down stack

Because of the way most microprocessors and computers work, inside
the machine memory, the stacks usually work ‘upside down’ to this
description; that is new items are added/removed from the low end of

the stack, as shown in Fig 2.
Hi Memory Address

e r—m-l P] " m s
H] B BElERaEr
" - A
i 3 3‘]: 3 Sﬁ“ i
| [10]]
Start Push POP POF

Fig. 2

Which way up vou wish to visualise the stacks does not really matter;
most people visualise them as in Fig 1.

The Beturn Stack

This is the conventional subroutine return stack, and for the 6502 it
occupies the address range 81FF down to @100 (hex). FORTH stores
linkage information here in the usual way, and also some other items
from time to time. The processor stack pointer S does the work of the
pointer = shown in Fig 2. This stack will always be referred to by its
full name ‘“the return stack’.

The Parameter Stack

All calculations and operations, are carried out upon items in place at
or near the top of this stack, The items are nearly always 16 bit integers,
though double precision (32 bit) numbers may also be used. Manipula-
tion of single bytes takes place as 16 bit integers with the unused high

bits held at zero.

For example, the operator + adds two integers together, It removes the
top two numbers from the stack, adds them, and returns ONE 16 bit
integer to the stack as the answer.

It is possible to transfer numbers from one stack to the other, (with
care), and to manipulate the relative positions of the top 3 or 4 items.

The parameter stack occupies most of the zero page and uses the pro-
cessor X register as the stack pointer.

Postfix Notation

This is the concept of supplying an arithmetic cperator AFTER the para-
meters. It is most easily seen with a simple arithmetic example,

Consider the following two statements:-
< o g Algebraic notation
o B Postfix _
The first is the ‘normal’ way, the second one reads as follows:

Reading from left to right, FORTH first encounters the 3. This, like
all explicit numbers, is pushed onto the stack, Likewise the next item,
the 2. The next thing is + which FORTH interprets as follows:

Take the top two numbers from the stack, add them, and return the
answer 1o the stack’.

&,

This fs much quicker than the algebraic form, where the line must be
scanned beyond the operator {+ in this example) 1o ensure that all the
variables or arguments have been located,

The Postfix notation reguires that the arguments exist (on the stack)
hefore the operation isinvoked.

Try this example: 3 2 + 4 7 + ¥ which yields 55. See the illustra-
tion of the stacks below. :

) [5] [5] '8
B B

)
3 92 + A 7 + =

MNotice how the intermediate products D and 11 are |left on the stack
and appear ready for the muitiply operator withoutany intervention.

In normal {algebraic) fashion, this would have been written
{3+2) * (447} =

MNote also how the postfix version did not reguire brackets. This is be-
cause the order in which the operations take placeis fixed only by the
order in which YOU present them, NOT by somsz arbitrary rules of
priority.

| hope you can now see how the postfix idea falls in perfectly with a
stack operating machine, and how it increases the efficiencey and
throughput of the program. It may surprise you that many languages
are ectuzlly postfix ‘inside’ and they spend much code and time in
converting from algebraic notation and back again for the supposed
‘convenience’ of the user. FORTRAN compilers fall into this category.

The use of 3 stack also means less named variables for storing interme-
diate results, or for passing arguments between routines. Arguments for
routines are passed on the stack, of course. Named variables and con-
stants can be created if required, but in general, the fewer the better.

The Dictionary=
FORTH is a language composed aimost entirely of subroutinedike pro-

cedures. When a procedure is executed, a return address is pushed onto
the return stack and removed as the procedure exits.

In FORTH the procedures are calied “Words’ {and what else is a language
- composed of?), and each Word has a distinct NAME of up to 31 ASCII
characters (excluding ‘space’, CR or LF or NULL).

The collection of Words which compose the language is the
DICTIONARY, arrangad in the form of a linked list.

When a2 Word is used, the dictionary is searched from the top (most
recent} end to find the required word. What is found” is the start
address of the Word. Once found, the Word is either executed, if in
execution mode, or compiled, if in compile mode. Either way, the start
address is all that is required for either of these.

The file FORTH contains around 253 Words, some of them machine
language primitives, most of them writtenin FORTH. Yes the language is
written in itself.

The whole concept of FORTH programming is to build new Words
which consist of a sequence of calls to existing Words. This sequence of
calls then takes place when the new Word is executed.

Of course this new Word can then in turn be called by further new
Werds, thus building up the complexity of what each procedure (Word)
can do until finally, one Word invokes your entire application.

Each new Word is linked into the dictionary, such that it is indistin-
guishable in structure from the rest of the language.

The act of programming literally extends the language {dictionary), to
generate a new, extended dictionary of words which can carry out
vour desired function.

It is possible to save the new extended dictionary asa new version of the
language which can be loaded and run directly. That is, you have the
capability to create different FORTH's, for specific applications.

The subject of the dictionary and its structure will be covered in more
detail later on.

Virtual Memory

ORIC—FORTH implements a wvery simple disc operating system
emulated in RAM, which views the disc as consisting of numbered
blocks, each block being 1K bytes regardless of actual disc sector size.
The blocks are numbered from @ up to the capacity of the disc.

¥ the user wishes to access block ‘n’, a simple operation brings that
block Into a buffer in RAM memory, where it can be manipulated, If
the block is aftered in any way, the updated version will be rewritten to
disc automatically, (if it has been altered).

This simple scheme means that the whole of the disc can be "addressed’
as though it were memory, the address consisting of two parts:

The Block number
The byte address (@ to 1823} within the block

Chapter 3
Getting Going — Some Simple Examples

Assurming you have loaded FORTH, and got the ‘OK" prompt, then first
type EMPTY—BUFFERS < CR > to initialise the |/C buffers, ALWAYS
DO THIS after a cold start unless you have some specific reason for not

doing so.
1. Typing in response to "OK’,

The system is in terminal input mode, and is waiting for key-
board input as indicated by the presence of the cursor. Any-
thing you type in is initially stored in a Terminal Input Buffer
(TIB), B0 characters long. Nothing really happens until you
type carriage return << CR >, If you try to enter more than
80 characters, the input routine ‘closes’ the input with a
<_CR > for you. After typing <<CR >, the FORTH outer
interpreter starts to work its way along the input line f{as

stored).

The interpreter looks for groups of characters, separated by
spaces:
*If it finds a FORTH word, that word is ‘executed’.
*If it finds a number, that number is pushed on to the stack,
*If it cannot recognise what you have entered, it aborts back
to input mode, displaying a '? and the thing which it did not
like.

2. Simple Arithmetic
If vouenter 2 3 + . < CR> thenwhat yougetis5 OK
What happened? The 2" and’3" were pushed on to the stack.
‘+' means ‘add the two top stack entries together, and |eave
the answer on top’. Finally °." means 'print the top of stack
as 8 number’.

Try: 4 5 + 6 7 + " | Should give 117 OK

3. Mumber Bases

Forth can work in different number bases, and can change at
any time - you can usé it as an OCTAL/DECIMAL/HEX/
BINARY calculator. At cold start, FORTH starts in
DECIMAL. Typing HEX <<CR >>changes it to a hexadecimal
machine. DECIMAL <<CR >changes it hack again.

in the following, bold type shows what you typed (termin-
ated by <_CR >*); FORTH always finishes with OK to show

it has finished the current set of ‘commands” and is ready for
more.

HEX OK
3BES8 C8 +. 3CBO OK {hex addition}
25 2F * | 6CB OK {hex multiplication)

DECIMAL 1348 HEX . 544 OK (decimal to hex)

Base changes occur by storing the relevant value in variable
BASE, so

8 BASE ! OK (stores 8 which means
OCTAL)

63*, 22 0K (octal multiplication)

22 DECIMAL . 18 OK {octal back to decimal)

Adding a New Word to the ﬁinﬁﬂnaw

So far everything you have typed has been executed im-
mediately after typing <<CR >=. In order to add a new word
to the dictionary, FORTH must change to COMPILE mode
50 that the right things are compiled into the dictionary list
rather than executed.

Suppose we wish to create a word which takes a number
from the top of the stack and returns the CUBE of that
number, we can try this from the tarminal first.

2 DUPDUP* * , 8 OK

Explanation: ‘2' goes on the stack, DUP DUP makes two
extra copies (3 altogether), * * multipliesall these together,
leaving the CUBE on the stack, for "’ to print, To make this
a part of the dictionary, type as follows:

- CUBE DUP DUP * * ; <CR >0K and then

5 CUBE . 125 OK

If you type VLIST (CR} and Control C, you will see that
CUBE is now at the top of the dictionary, and can be used
like any other FORTH word. This is the result of the colon
.... semicolon pair which define a new Word to be compiled.

: abed means “this is a new Word called abed’. The Forth
words which then follow are compiled into the dictionary
under the name ‘abed’. Finally the *)" means “this is the end
of the new Word’. Remembering that 8 BASE ! sets OCTAL
number base, we could now go

: OCTAL 8 BASE ! ; OK to define an operator which will
set OCTAL number base if you type OCTAL << CR >,
Similarly you could have

: BINARY 2 BASE ! ; OK

A DO ... LOOP

This is a simple loop with a counting index, (a bit like a FOR
...NEXT loop in BASIC).

DO takes two variables from the stack; the initial value of
the loop counter is on top, and the final value +1 is next one

down on the stack,

Example: (‘" returns the value of the loop counter)
DECIMAL OK

: 10—-CUBES {(PRINT ATABLE OF CUBES
@ TO 9

18 @ DO {set up the loop end and
start)

CR | . I CUBE . {print a number and its cube)

LOOP CR {end of the loop, print a
carriage return)

: DK fend of new WORD)

now we can execute the new word

18—CUBES <<CR >

@ i

1 1

2 8

3 27

4 64

5 125

6 216

7 343

8 512

9 729

The IF ELSE ... ENDIF conditional {or IF ...

ELSE THEN)

‘IF" looks at the top-ofstack {and removes it).

It interprets this value to be either false (= @) or. true (non-
zero), and executes the appropriate part of the conditional
statement as follows:

ST

IFexecute this part if trueENDIF otherwise come
to here

T

test value here

+
\Ftrue partELSE false part ENDIF continue here

(note ‘“THEN' is an alias for ENDIF)

So here is an example which returns the absolute value of the
top-of-stack number. MNote '@ <<’ is a test of top-of-stack
which leaves a ‘true’ if the top-ofstack is less than zero
i.e. negative.

: ABS=VALUE -

DUP @ < (copy the number, test its sign)

IF MINUS ENDIF (change sign if negative)

. (end of this word)

and then try it

18 ABS —VALUE . 10 OK

-5 ABS-VALUE . 50K

The BEGIN UNTIL LOOP

This loop takes a truth value as its argument, usually computed
within the loop, which is tested by UNTIL . If this is false,
the program loops back to BEGIN . If it is true, the pro-
gram continues past the UNTIL to the following instruction,

Example

: TCUBES iname of this word)

) {initial count value)
BEGIN {start of loop)

CR DUP . DUP CUBE .l(print a number and its cube)
1 + (increment the index)
DUP 1@ = (test for index = 1@)
UNTIL (end of loop, exit if true)
CR DROP (throw away final index)
= QK (end of word)

TPCUBES _ now execute. it

@ @

1 1

2 8

3 27

4 64

5 125

& 216

7 343

8 512

g 729

oK

-11.

TEXT INPUT and QOUTPUT

Qutputting text strings will generally use the word TYPE for
internally generated strings, or . " FRED" to generate “fred’,
which was a string literal. Subsidiary operators for text
output include;

—~TRAILING

EMIT

SPACE

SPACES

and ERASE, FILL, BLANKS, for presetting string storage
areas.

Mote that in FORTH, all strings are stored with their length
in the first byte — so maximum length is 255 characters.

Inputting text streams makes use of QUERY, EXPECT, and
the EQITOR word TEXT which moves input strings to the
buffer area which starts at PAD.

Camparison of strings can be done using the Editor words -
TEXT and MATCH.

NUMBER INPUT/OUTPUT

All number 1/O takes place in the current BASE, so ensure
this is correct when programming number 1/0,

The principle numeric input word is called NUMBER, which
takes a string of characters at a given address and tries to con-
vert them to a double precision integer.

When you type 123 <CR >, it is the NUMBER word which
converts thestring 1'" 2" 3" tobinary and puts it on the
stack. Note that 123 <CCR > generztes a single-precision
{16 bit) number,

If you type 123, << CR >, the NUMBER routine recog-
nises the decimal point as a request for this to be double
precision (32 bit) integer.

Note that 1.23 will also be converted as 123, but variable DPL
will hold 2 to indicate 2 decimal places were found on the
Input conversian,

In erder to make number input a bit easier, a new word N3
exists on cassette extensionscreen 1, which does all the
necessary things to getsingle precision numbers from the key-
board and put the result on the stack,

47,

Number Cutput

To output a number, it has to be turned into a string. The
operators .’ .R' ‘D.” and ‘D.R’do this for you for normal
output. These use formatting/conversion operators which are
available to you for special conversions. These operators are;
<# #S # HOLDSIGN # >

* You should note that output number conversion takes
place RIGHT TO LEFT.

* These primitives always work on double-precision input
values.

* The string for printing is generated DOWNWARDS from
PAD. The following example demonstrates some of the
features you can do — it takes a 16 bit integer from the stack
and prints it as hours : minutes : seconds

First we need a word which inserts the : character into the
string.

HEX : " 3A HOLD ; DECIMAL

This defines the new word *:' which will do the trick. (Hex
$3A is the : character]

Mext, an operator to convert in units of 60 {for seconds and
. minutes).

- . @0 # 6BASE | #':’ DECIMAL ;

So word @@ goes as follows:

converts the least significant digit in base 10

6 BASE ! sots BASE 6

converts the next digit in base &

‘+ ' inserts the : symbol

and finally DECIMAL is restorad

and finally

. TIME 0 <3 :00 :00 # # #> TYPE SPACE ;

TIME expects the value for output on'the stack, ltaddsa @
to the stack to make a double precision number,

< indicates "start of number conversion routine”

.00 converts the least significant part of this number to a
string in base 6@ (for the seconds)

;@@ again does the minutes

converts two more digits (in decimal) for the hours
#2>> says 'end of conversion

TYPE then types the resulting string

So 65 TIME < CR >would print §0:01:85

Note that # #5 SIGN HOLD can only be used between the
<# and #> symbols

Conclusions

By now, if you typse VLIST, you will find vou have added a few new
words to the dictionary. You could do one of two things — you could
FORGET them, to free up the space in memory, or, if this was an
application program, you could re-set the boot-up parameters 1o re-
member the new words as a permanent part of FORTH, and save the
whole new dictionary as a new version of the language. (More on this
in an appendix). :

Chapter 4
Editing and Creating Source Programs

Having seen how you can give commands to FORTH, and create new
words, let's now see how to make a proper source program, using the
Editor. .

First the editor must be loaded from cassette. It exists as screens 1 to 7
on the source tape, therefore having aligned the tape and set SPEED
correctly, type 1 7 CLOAD < CR > and play the tape.

The seven screens will now be loaded, and OK will be returned at the
end. If you wish to see the source text, then 1 LIST <CR = will dis-
play the first 4 lines of screen 1. Any key except + displays the follow-
ing four lines, 4 scrolls through to the end.

Alsoc 1 7 INDEX <<CR >will display the comment lines at the top of
screens 1 to 7.

The source text can now be compiled into the Forth dictionary, which
simply requires that you type 1 LOAD <CR >,

The 7K of source text will now be compiled (taking 30 — 4@ seconds)
to 1.5K of Faorth object code. Two messages “'xxxx ISN'T UNIQUE"
will be generated (don't worry) and finally the message “EDITOR
LOADED" will appear.

To use the Editor, now type EDITOR <<CR > . You now have to
choose a suitable block to put your new program — lets say you choose
block 4. To clear this of any rubbish, you can type:-

4 CLEAR <CR > or to see what is there, type

4 LIST < CR > which displays that block (also called a screén) 4
lines at a time (press any key to get subsequent groups of 4 lines, or
4 to scroll through to the end). _

Each ‘screen’ consists of lines @ to 15, each of which can hold 64
text characters.

To enter some new teéxt on line @, enter the command
@ NEW <<CR > which ‘opens’ line @ for text entry. Anything you,
type up to the next <_CR > will be entered into that line.

By convention, line @ of each screen is a comment line, describing the
Eﬂgn‘terg:. so try entering:- (THIS IS AN EXAMPLE SCREEN)
CR

.15-

The editor will now prompt you for line 1. If you wish to leave this
line & blank, type a space, << CR = , and line 2 will be prompted. Sup-

pose we enter the CUBE definition from the previous chapter
. CUBE DUP DUP * * : { n———cubeofn | <<CR>

If that is all you want to enter onto this scrzen,type <<CR > straight-
away in answer to the prompt for the next line. You can now try
command L to display your new screen, and try out some of the other

Editor commands. *

You could now LOAD your new screen, zdd the words in it to the
dictionary.
In the following section, some of the editor commands and their effects

are described,
* When you have finished editing a scrzen, enter the command

FLUSH << CR = this ensures that your edited screen is put back onto the
disc.

Text Input Commands

Having selected the screen for editing (say screen 4), by geing 4 L[51T
< CR >, or 4 CLEAR <CR > the following commands are avail-
able for insertion of text. 1 P This text will goon line 1 <<CR>>

P means ‘Put a new Line’, and the proceeding number is the line selected.
All the characters after the space after P are put on the line {1 in this
case}, overwriting anything already present. Max line length is- 64
characters. Beware of not putting anything at all. If you accidentally
go 1 P < CR >, a ‘null” will be put in this line, which will cause an
error later. Ifyoudothis,go 1 E <.CR > to erase the line completely.,

n NEW <<CR >selects line n for input. The screen is displayed to
yvou, with [ine numbers, as far as line n, where it stops and prompts
for your input. MNow type in the required text, finishing off with a
<. CR > . immediately, closes the input, end the rest of the screen

scrolls through. _

n UNDER <.CR > displays the screen down te the beginning of line
n + 1 ,and waits for your input, as in NEW,

The original line n + 1, and succeeding lines are moved downwards.
Line 15 is lost.

Screen Editing
These commands operate on whole screens.

n LIST <<CR > displays screen n

n CLEAR <<CR > clears screen n to all spaces

nl n2 COPY < CR >>copies screen nl to n2

L re-lists the current screen, and the current cursor line

FLUSH forces all amended screens back onto the disc after editing.

Line Editing
These commands operate on a selectad line within the current screen.

Use is made of a buffer area in RAM called the PAD (short for Scratch-
pad). PAD is always 68 {decimal) bytes higher in memory than the top
of the dictionary.

n H <CR >copies line n into the PAD buffer (Hold)

n D <CR>>copyline n into PAD,and delete the line from the screen.
Lines n+1to 15are moved up, and new line 15 is cleared.

n T <CR >>Type line n on the terminal, and save it in PAD

n R <CR >>Replace line n by the line stored in PAD

n | < CR > Inserts the stored line in PAD into line n. Existing lines n
to 14 are moved down to make room. Old line 15 is lost.

n E <CR > Erase line n to space. _

n 5§ < CR>>Spread outatlinen. Lines1to 14 are moved down, leaving
line n clear.

String Editing and Cursor Control

Editing operations on character strings within the current line take place
with reference to the editing cursor, displayed as a crosshatch
character W', ,

Initially, TOP, sets the edit cursor to the top of the screen. Going back
to the example above, where definition CUBE was entered onto line 2,
then 2 T << CR >>willdisplay line 2, with the edit cursor at the start of
the line ®: CUBE DUP DUP * * ;

To find the string DUP, type F DUP <CRZ>>. The screen is searched
forward from the editor cursor position to locate a match to the string
you have requested, and when found, displays as follows:

- CUBE DUP m DUP * * : Edit Cursor

Going N <CR > will continue the search for the NEXT appearance of
the same text

: CUBE DUP DUP®* *;

Executing B < CR >> takes the cursor back by the length of the text
string located.

: CUBE DUPEDUP * *:
Note that the cursor can also be moved directly by the M command.

Having located the part of the line you wish to aperate on, the following
commands allow you to delete/change strings of characters.

X DUP <<CR > Command X searches for and deletes the string
: CUBE DUP®* *;

C DUP < CR > Command C copies the string that fallows into the
cursor position

: CUBE DUP DUPm * * .

Other commands are TILL text and n DELETE, which are explained
in the glossary,

-18-

Chapter 5
An Example of Program Development — Simple PRINT Utility

Let us think of a starting specification for this:

“To print a contiguous block of screen numbers, at three screens per
page, with page number, title line and system ident message™.

Forth is a top-down language — that is, one where problems are best
solved by starting from the top of a program, and working inwards,
refining at each step.

So, suppose we want to issue a command ‘from’ ‘to’ PRINT <{CR >,
and the spec above says it does 3 screens per page. Presumably if
there are less than three, then just those left are printed.

Thus the first attempt might be something like
FRINT SET-PAGE-1
MORE~THAN—3~SCREENS?

IF PRINT—PAGE—FULL ELSE PRINT-WHATS—LEFT
ENDIF

REPEAT-TILL ALL DONE ;
Of course this won't work, but it has all the essential elements.

If we also define @ VARIABLE P#for page number, then SET—PAGE—1
becomes 1 P# |

Also, we haven't yet turned the printer on or off!

So for our next attempt, we can have

. PRINT 1 P# | PR—ON (printer on}

SET—LOOP-UP BEGIN ({begin loop)
=3—-LEFT-TO-DO? (enough for a whole page?)

|F DO-PAGE ELSE DO-REST ENDIF

UNTIL (till all done)

PR—=OFF ; {printer off]

and now we can define a few more thinags.

HEX : PR—ON F§57B DUP DUP 1BF4!1C22!1CID!;

: PR—OFF CC12 DUP DUP 1BF411C2211CID! ;
DECIMAL

these modify Forths 1/O handlers to enable/disable the paraliel printer

port.
How about DO-PAGE? if this took in the arguments start—screen—
number and count—left, and returned the updated versions, i.e, start
+3 and count =3, then it automatically leaves the correct arguments
to be called again in the main loop.

With a bit of trial and error, | got
: DO—-PAGE 3 —SWAP 3 +SWAP OVER DUP 3 —=PRINT-IT ;

This DO—PAGE adjusts the start and count, and also then produces
values ‘from' “to’ for PRINT=IT, which is going to do the real work,

Similarily, DO=REST should also return the two adjusted values, except
that the final ‘count-left’ will be ZERO.

: DO—-REST ({from to —— from @)
= ROOVER DUP R> + SWAP PRINT—IT ;

This works out nicely, because the ‘count=ieft’ is on the top of the stack,
and is only @ when all the printing is finished, so it can be used to test
for exiting from the main print loop.

We also need to alter the ‘from’ “to’ numbers which are input initially,
to the ‘from” ‘count’ required by DO=PAGE and DO—REST. This
same ‘count’ can then be tested to see if it is >2,

S0 now we have

PRINT {from to |

1 PH# I (set page 1)

PR-OMN CR (printer-on, CR)

OVER — 1+ {change ‘from’ ‘to’ into “from’
‘count’)

BEGIN (start print loop)

DUP 2 >IF (test count value)

DO—PAGE ELSE

DO--REST ENDIF
CR

DUP @ = UNTIL

DROP DROP CR
PR—OFF ;

(full page if >2}

(else the rest)

(force output to occur)

(loop until @ count is true)
(throw away unwanted variables)
(printer off and done)

PRINT—IT is next, and it receives as input the ‘from’ and "to" vaiues,
which can be used in a DO....LOOM

PRINT—IT (to from ——— print them}

PR—ON DO | PRINTSCRN LOOP CR 15. MESSAGE CR CR CR
CR PR—OFF ;

So this now does the whole or part page, calling PRINTSCRN to print
one screen, and the system identification message (number 15) at the

bottom.

Now we need PRINTSCRN — this can be borrowed entirely from the
LIST function: :

PRINTSCEN (n ——— print this one)
DECIMAL CR DUP SCR ! . ” SCREEN ” . 16 @ DO
CR |1 3. R SPACE | SCR @ .LINE LOOP CR ;

which gets lines ata timeina DO.....LOOPandcalls .LINE to printthem.

8o this is almost complete now, and the final utility is reproduced at
the end of the chapter, using codes for an OKI printer which can do
double size characters, See if you can work out how it fetches the print
header message and adds it and the page number to the top of each page.

Also reproduced is a sample stack diagram. These are invaluable in
trying to visualise what is happening on the stack, and their use is highly
recornmended,

)

PRINT UTILITY PAGE 1

SCREEN 3
@ (PRINTING UTILITY 1 of 3 WANB MOV 81)
1 FORTH DEFINITIONS DECIMAL
2 0 VARIABLE P#
3 (LINES 6 TO 8 ARE PRINTER DEPENDANT)
4 HEX : PR—ONFE7B DUPDUP 1BF411C2211C1D ! ;
5 PR—OFF CC12 DUP DUP1BF4 1 1C2211C1D | -
6 :BIGCH 1F EMIT ;
7 : NOMCH1E EMIT ;
8 : TOF CR . “ READY?" KEY DROP :
g DECIMAL
10 PRT—-SCREEM {n ——— prints scrn n)
11 DECIMAL CRDUPSCR ! .” SCREEN™ . 16 0 DO
E CRI!3.RSPACE|SCR@ .LINE LOCPCR :
=
14
15
SCREEN 4
@ (PRINTING UTILITY 20f 3 WANB NOV B7)
1 ;
2 PRTHED {output page header)
3 PAD C@ 38 MIN 1 MAX PAD C! BIGCH SPACE PAD COUNT

. TYPE 31

4 PAD C@ —-DUP @ < IF CR DROP 32 ENDIF SPACES

5 M PAGE” P# @3 .RCR CR 1 P#+I NOMCH ;

B

7y PRINT—IT {endstart ——— print these scrns)

8 PR—ON PRTHED DO | PRT--SCREEN LOOQP

9 CR 15 MESSAGE CR CR €R PR—OFF ;

10

11 : DO-PAGE .(from count ——— frm+3 count—3 do 3 scrns)
12 3— SWAP3+SWAPOVERDUP3 — PRINT=—IT ;
13—

14

15 :

SCREEN B

@ (PRINTING UTILITY 3of 3 WANB NOV 81)
1

2 DO—REST (from to —— from @ do 1 or 2 scrns left)

3 >R @OVER DUP R> +SWAP PRINT—IT :

A

5

6

7 PRINT (n m ——— print szreens n to m, 3 per page)
8 CR ." HEADER:" EDITOR ENTER

9 1 P# | PR—ON CR OVER — 1+ BEGIN

1@ DUP 2 > |IF DO—-PAGE ELSE DO—-REST ENDIF
11 DUP@=TOF UNTIL

12 DROP DROP PR—ON CR CR CR CR PR—-0OFF :
13 ;: S .

14

15

ORIC FIG—-FORTH

-23-

"$LI8213s £
J0 3DYd4 B JO) siaqQUINU USAIDS | JJEIS, pue pua, aJe
a5aLl '8l Woly, PUB S4U04), WO B W T =1LNIM d
Joy syuawnBle eysinbs) sy pue ‘Jjunco, pue wody,
perepdn syl selelausb 1) ‘susalds g 5| J9yd B SoUg
1B AUN03, puE Wody useids BUILIEIS Byl Ylim sielug

30%d—04 ‘53.1L0N

LI=LMNIkd

g unog £4wiolg
—- T12, T E4014 E=1lunoy £4+Wwody
£ & E+Wod4 EHWC E—iuno} | g+lioly
4Na g0y g+ol4 | g—uned E+Wwody
H3no E+ll0I4 £=1unog CHolg -
d'MS E—unaog E+lol4
+ E+LUQI4 £—1unan
X & Wl 4 E—1unay
. d M5 wiad4 E—unon
w— £—unoco TR
(3 £ Wnon wod g
49%d—0d wnog Lol &
{3OEIS BY1 U0 JUNOD, pue WO, UliM SJalua)
SOHOM d0O.L HIVLS

3D¥4d—00 : aHOm
ALITILN LNIHd * NOILYOIddY

24

ellap

FORTH Dictionary Structure

Since 99% of FORTH is in the dictionary, it is very wm-thwhi[e to investi-
gate its structure, which we can do by reference to our favourite example,
the CUBE command., When you typed in

- CUBE DUP DUP * * : <CR >

the new word CUBE was added to the dictionary. In memory, it actually
looks as follows, where each rectangle represents a byte of memory.

$84
¢

U

B

E + %80

MAME FIELD ADDRESS A

.

low link

hi

link

low|address of

- CODE FIELD ADDRESS

hi |DO-COLON
low]| address of

hi | DUP

lo] address of

hi | DUP

lo] address of

hi)] *

lo | address of

hi) *

lo

address.of

hi

SEMI-COLON

LINK FIELD ADDRESS

-
PARAMETER FIELD ADDRESS)

Higher Memory

NEXT FREEBYTE -

Dictionary Header
for word
‘CUBE’

Parameter BLOCK
of "CUBE’, giving
the list of
nperations to be
performed.

As you see, a dictionary entry comprises a HEADER SECTION, and a
PARAMETER section. The first contains all the necessary information
that describes the name of the entry and its type; the second part con-
tains a list of addresses which effectwei‘y' point to those words which

malke up the new word,
The header block is subdivided as fnl!um:

Mame Field: This starts with a length byte, whose five LSB's indicate
the length of the following ASCII string, which is the name of the
FORTH word. The MSE of the length byte is also set to identify it.
Then comes the ASCII string of the name, and the final character also

has its MSEB set, to mark it.

The address of the length byte is generally known as the Name Field
Address, or NFA,

Link Field: This contains the Name Field Address of the previous
dictionary entry. Thus these Link addresses chain right through the
dictionary, allowing it to be searched from the most recent end down-

wards. The address of this field is the LFA.

Code Field: This is the field which defines -he ‘type’ of word, and it's
address is called the Code Field Address ICFA), The CFA of the
definition is also the acddress at which execution of a word starts;
the contents of the CFA being the ADDRESS OF REAL, EXECU—

TABLE, MACHINE CODE.

In this example the code field contains the sddress of DO—-COLON, a
code routine to perform a FORTH subroutine type of call, appropriate

to a COLON definition such as CUBE,

Any Word compiled by “:" will have the address of DO—COLON in the
CFA, other Word types will have other addresses in here, depending on
the ‘class’, or ‘type’ of Word.

The Parameter Field contains, in this example, a list of the Code Fieid
Addresses of the Words which make up ‘CUBE’, and the first address is
called the PFA. For COLON definitions, the list terminates with the
address of SEMI—COLON, which is effectively an ‘end-ofsubroutine’
function — a sort of FORTH equivalent of RTS in assembler. The con-
tents of the parameter field will also vary with the ‘type’of Word.

Vocabularies

The link addresses chain all the dictionary Words into a long list,
in the first instance, is the whole of the FORTH VOCABULARY, For
convenience, and searching speed, you can segregate new Words into
different Vocabularies, an example being the EDITOR.

Vocabularies have two main effects: First they increase compilation
speed, by allowing dictionary searches to start in the right ‘area’.
Secondly, you can have Words with the same Name in separate

Vocabularies, with less risk of confusion (e.g. Editor ‘R’ command and
FORTH 'R’).

When a new Vocabulary is set up, the Link address chaining is modified
to ensure that new Words are compiled into the CURRENT VOCABU-

LARY.
An Example
1. After loading FORTH, the initial dictionary structure is as shown:

; LINKS
IS T [T— — T T - '

T T T T [I leous] [

B | —PpHi memory
All words in the FORTH VOCABULARY

Start of FORTH

9 On adding the EDITOR, a second Vocabulary exists:

Start of FORT Start of EDITOR VOCABULARY

When you type EDITOR < CR >> this tells the interpreter that all
dictionary searches will start at the top of the Editor Vocabulary.
Typing FORTH < CR > resets the pointer, called the CONTEXT
VOCABULARY pointer, to the top of FORTH, so the Editor is

skipped over.
3. Now suppose we add : CUBE to the FORTH vocabulary.

last link goes toStart of FORTH
Start of Start of

Editor FORTH

Motice how CUBE is added to the end of the dictionary, but the
FORTH linkage now skips right over EDITOR.

As before, the end of EDITOR points through to the start of
FORTH: the general rule being that all vocabularies fall into the
main FORTH wvocabulary, but not into each other.

4. If we now added, say, some new Words into a Vocabulary called

PRINTING, we would get:
--IIIMI

TI1 T T Tom

R
_ Label ta
Start of EDITOA] |l rppTH

-2

LABEL points to
start of FORTH

Start afJ
FPRINTING!

MNow there are three VOCABULARIES: FORTH, EDITOR, and
PRINTING.

FOR SAFETY, ALL NEW VOCABULARIES CHAIN {i.e. LINK)
TO FORTH, NEVER TO EACH OTHEF,

B, To set up a Vocabulary, the relevant instruction is FORTH

DEFINITIONS (set FORTH as main VOCABULARY) VOCABU-
LARY FRED IMMEDIATE (declare a new VOCABULARY
called FRED) then FRED DEFINITIONS sets FRED as the
CURRENT vocabulary (i.e. new Words are added to the FRED

list).

Finally, FOGRTH DEFINITIONS goes back to FORTH at the end
of FRED's additions.

To use Words that are in FRED, type FRED <_CR >

The Other 1%

We said that 99% of FORTH is in the dictionary. The 1% that is not
(apart from the stacks), is the CASSETTE—3UFFER AREA, and the
USER VARIABLE BLOCK.

These are located at the top of memory (s2e the memory map).

The 'user variables ' is actually a block of variables used by the system,
though they are all accessible to you. They are called USER variables
because their values are particular to a specific user. FORTH can be
made multi-user, and in such cases, there would be a block of USER
variables for sach person and only the user pointer then needs to be
changed to reference each.

The actual contents, their meanings, and the relevant boot-up values,
are given in an appendix, and the glossary.

The cassette-buffer is the area in which you manipulate cassette infor-
mation. Assupplied, there is 1 buffer, 1028 bytes long, used in turn by
the FORTH cassette manager. The buffer is composed as follows:

2 bytes: Holds the ‘disc’ - block - number which is loaded into this
buffer.

1024 bytes: The data area, holding a 1K ‘dise’ block.

2 bytes Contain @, to make the end of the buffer.

If you wish to get at 'disc’ information, the relevant FORTH words are
BLOCK, BUFFER, UPDATE and FLUSH. Ses the Glossary.

Ll (Ll ©
The Code Field

In every FORTH dictionary word there is a two byte location called
the CODE FIELD. This very important field determines the TYPE of

word, and how it executes,

The contents of the CODE FIELD are the address of a real machine
language routine to be executed when the word is first called, i.e. the
CODE FIELD ADDRESS represents the start of the word.

To see how it functions, we must consider in more depth how FORTH
works,

As described in Chapter 7, most FORTH words consist of a list of
addresses of other words to be executed. The FORTH program counter,
called [P (Interpretive Pointer), follows this list item by item, acting in
a very similar way to the processors’ own program counter.

Let us first look at the ;' type of word, the most common, and our
example CUBE. Suppose we have another word which has somewhere
in it the word CUBE, e.g. : FRED 3 CUBE . ;

When this word has started, IP points first to ‘3", which is actually
defined as a FORTH word to put the value '3' onto the stack, IPis
then incremented by two, and points to the list entry for CUBE, which
containg the CODE FIELD ADDRESS of ‘CUBE’. FORTH now
performs an INDIRECT JUMP instruction. This means it ends up not
at ‘CUBE’, itself, but at the machine code routine pointed to by
'‘CUBE's Code Field. That sounds very confusing. Lets try and draw it.

f d: CODE CODE CODE CODE
HEADER “ n“;“ FIELD FIELD FIELD FIELD

far oo |[A0DRESS | ADORESS | ADDRESS | ADDRESS

o £OLOM

af of of of

i1
"

ra TCuBE" '

Stage 1: 'IP" points he*:e—l
on completion, IP
is incremented so:

Stage 2: 'IP" points here

and so we have here, £ODE FIELD of 'CURE! Do COLOM

Within 'FHED' :
p t L e Mddress of SR
¢ i}
e points to AODRESS Pﬂkn 1ng OOCOLEN! - Feal Code
OF CUBE -

Here are the two levels of indirection for which FORTH is renowned -
i.e, two levels of pointing to the real code.

The Jump Indirect (which is part of the FORTH inner interpreter)
takes execution straight to '‘DOCOLON’.

'DOCOLON’ behaves like a subroutine call, ir that it says:

‘In order to start executing the new word (CUBE in this case), IP must
be changed to point to the list within CUBE — its parameter field. To
do this we must first save where |P is at the moment’.

And that is what DOCOLON does. It first saves IP on the processor
RETURN stack, and then loads |P with the address of the start of
‘CUBE’s list of addresses.

CUBE finishes with a *;. This is the reverse of DOCOLON — it pulls
the stored value of IP off the return stack and restores it.

In summary the, DOCOLON is 2 sort of FORTH “JSR’, and '} is the
equivalent of RTE.

DOCOLON is only one of many things that can be in the Code Field.
DOCOLON is only appropriate to words defined with the “:" symbol,
as only this means that the new word will consist of a list of old words,
hence if the CODE FIELD of a word contains the address of DOCOLON,

the word is a ‘colon definition’.

Other Word Types

The other commaon word types in FORTH are CONSTANT, VARIABLE,
USER and CODE.

Example 1

3 CONSTANT FRED defines the word 'FRED® which is a constant
type, and the value of the constant is 3. Its dictionary entry looks like

HEADER CDDE VALUE
FaED FIELD '3

: Points to DOCONSTANT® — this cdefines the operation of
2 COMSTANT, and is a routine which extracts the value '3’ and pushes
it onto the stack when FRED executes.

Example 2

5 VARIABLE DICK defines a VARIABLE type, with the initial value
of the variable set of b.

HEADER GODE -
pLCK! FIELD

L T Address of storage location

Points to ‘DOVARIABLE’ — this defines
the operation of VARIABLE, which is that when DICK executes, the
ADDRESS of the storage location is pushed onto the stack,

Example 3

26 USER TOM defines a USER variable, named TOM. User variables
are stored in a special block in high memory, and this would define
TOM as being the 26th entry in the user block, and when TOM
executes, the ADDRESS of the storage location is pushed onto the stack.

Example 4 — with an Assembler
CODE HARRY code

machine code.

defines a machine code routine. In this case, the word contains the
code to be executed directly, so the code field points to the start:

HEADER EODE MACKINE CODE
HARRY FIELD INSTRUCTIOMS
I S
points here

(See also the next chapter)

The next question is — where do the routines DOCOLON,
DOVARIABLE ete, actually reside?

The arswer is they form part of the relevant DEFINING WORD. A
defining word is one of the group of *', VARIABLE, etc so called
because they DEFINE a new word of the appropriate type.

DEFINING words can be thought of as special words, which have two
distinct parts, one which specifies how to compile an entry of the .
correct type, and the second part which defines how it will execute.

For example * : * looks like this:

HEXT
B0 LIST OF -cone MACKLNE CODE DICTIONARY
COLON KORDS ERTRY

HEADER
for

this is ‘DOCOLON’ ‘—

When “:" executes (e.g. when you enter : FRED ;), the ‘LIST OF
WORDS' are the FORTH words necessary to CREATE a dictionary
header whose name is FRED, and whose CODE FIELD contains a
pointer to ‘DOCOLON’, the machine code which follows the *;CODE’

word,

Thus a defining word consists of: _

* A 'BUILD' part, which BUILDS the corrzct type of dictionary entry.
* A 'DOING’ part, which is the common sxecution code for words of
this type.

MNow we get to the best (or worst) part of al'|

One of FORTH's important features is the ability to create new defining
words. This is something that is very useful, and is a feature found in
only one or two other computer languages — of which BASIC is not one.

Two sorts of defining words can be generated — ones where the DOING
part is in assembly code, and ones wheare the DOING part is in FORTH.
The first sort offer a faster execution speed, but it is very important to
krnow what you are doing. The second sort are easier to do.
Wewil| restrict ourselvesto a simple example,a definition of CONSTANT.
: CONSTANT CREATE SMUDGE , ;CODE LDY #$2 < — This s
‘DOCONSTANT”
LDA (W), Y

PHA
| NY

LDA (W), Y
JMP PUSH

S0, : CONSTANT defines the name of this operation,
CREATE SMUDGE , generates the dictionary header for the new

word.
: CODE is the clever one which puts the ‘DOCONSTANT" start

address of the machine code into the code field address of the
new ward,

This short piece of machine code (for 6502) is what actually gets the
value out of 8 CONSTANT parameter field and puts it on the stack.

The second sort of defining word has the DOING part in FORTH, and
is most often used to create types of data structures.

Example: Here is ‘'CONSTANT' implemented this way:
: CONSTANT <BUILDS , DOES> @ ;
Unpicking this .. : CONSTANT is standard,

< BUILDS means “‘everything that follows here up to DOES > is the
building part of this defining word”. < BUILDS itself takes care of

generating FORTH headers.

g™ Means ‘takes the word on top of the stack and compile it into

the next dictionary location. Remember that to use
COMSTANT, a value is supplied first, which will go on the
stack, and sits there until ', ' uses it.

Sg < BUILDS , generates the header part of the new dictionary
entry,and ', ’ puts the value into its parameter field.

DOES means “everything that follows is the FORTH to be executed
whenever the newly BUILT word executed’’. DOES > also
pushes the parameter field address onto the stack when the
new word executes. Since, in this case, our constant is in the
parameter field, ‘@' gets the value stored at this address.

So i you went 120 CONSTANT MINE, using this definition of
CONSTANT, it would BUILD a dictionary header named "MINE" and
embed the value in the parameter field.

When vou execute ‘MINE’, the DOES part is called to get the value and
push it onto the stack. Simple really!

Now you work out this one, which creates one-dimensional byte arrays.
. BYTEARRAY <BUILDS ALLOT DOES> + ;

and would be used 23 BYTEARRAY FRED to make FRED, an array
of 23 bytes numbered @ to 22.

-33-

Chapter 9
Machine Code Words

It may be, that in order to improve execution speed, or to link to
routines in EPROM, that a machine code routine is required.

The true method is to use a structured FORTH assembler. However, it
would be useful to see how machine code can be written directly in
FORTH without the use of an assembler. The instructions for the
- assembler supplied with your cassette are described later in this manual.

The method used is to supply the assembler code as hex words or bytes,
and to use the FORTH words comma " and ‘C," which places the

bytes into the dictionary.
Let us have a simple example. To create the "ZAP" sound:

In assembler, the actual code required would be:

STX XSAVE [save X
JSR $F41B (ZAP)
LDX XSAVE (GET X)
JMP NEXT

Where NEXT is the FORTH linkage address to which ALL machine
code routines must go when they exit.

So first get the Hex codes for these instructions:

S0 you would get:

Address Hexcode Instruction
4000 8685 STX XSAVE
4002 201BF4 JSR ZAP -
4005 AGBS LDX XSAVE
4007 4C4404 JMP NEXT
Step 2

Write down the Hexcodes, in pairs, in the order given: 86B5 201B
F4AB B54C 4404

Step 3
Reverse the bytes in each pair: B586 1B20 A6F4 4CB5 (444

We can now make a compilable machine code routine.

HEX :
CREATE ZAP B586, 1820, A6F4 , 4CB5 , 0444 , SMUDGE

CREATE makes the dictionary header,
SMUDGE terminates the routine,
HEX is necessary because the code is in HEX,

(This method of “hex-code, hex-code,” will also work with -CODE
for making new defining words).

In order to make much use of an assembly code routine, you need to
know some more details of what you can and can not do.

* At the start of a Machine-code Routine

On entry to a routine, the 6502 Accumulator and Y-Register are avail-
able for use. Y is always set to Zero on entry.

The X register is the FORTH stack pointer and should not be used, or if
it is, save it first in the location XSAVE (which is HEX BS), and restore

it again at the end.
* Stack Access

The FORTH stack deals with 16-bit numbers. The current top-of-stack
location is accessed as address @,X (lo-byte) and 1,X (hi-byte). The
next item on the stack would be at 2,X and 3,X (e.g. as in LDA 3,X).

If you wish to make room for a new item on the stack, then DEX DEX
is required. Similarly, INX INX winds the stack pointer (X) past the
top entry to DROP it.

¥ Zero—Page
All of zero-page locations BB to FF are available for your use. :

* Branches

DO NOT USE “JMP' instructions except as given in the next section. If
you want an unconditional branch, fiddle it by using

CLC
BCC FRED

which uses no more space and is relocatable.
* Exit Paints

A variety of these exist, and they all eventually return to ‘NEXT’, doing
some commonly used functions on the way. They must all be invoked
with a JMP instruction.

-35-

NAME - HEX ADDRESS FUNCTION

MNEXT Baaq Proceecs to the next FORTH
instruction.
POP Q5EE Pops (removes) the top stack

entry-and goes to MEXT.

POPTWO BEEC Pops the two top stack entries
and goes to next. :

PUSH @430 Creates a new stack entry, and
puts into it the high byte from
the accumuiator, and the low
byta from the 6502 return stack
(pushed onto it before jumping
to PUISH).

PUSHEA @7Dc Similar ;o PUSH, except that the
Righ byte of the new entry is
automatically set to ZEHO, and
the [ow byte 5 the current
Accumulator value,

PUT P43F Similar 1o PUSH, except that the
new stack entry overwrites the
current top-ofstack item,

* Example

This example is taken from the FORTH interpreter, and is the code
which comes out of the "+’ operation, to add the two top-stack items

together.

18 CLGC : Carry =0
BS 0@ LDA @.X ; Add low bytes
75 @2 ADC 2,X : Addlow bytes
95 @2 STA 2.X : And store
Bs @1 LDA 3, X ; Addhig bytes
76 @3 ADC 3,X :; Addhiga bytes
95 @3 STA 3.X ; Andstore
4C EE @5 " JMP POP ; Exitdroppina old top item.

s0 writing this out gives:
1885 (@75 0295 (2B5 @175 0395 M34C EEQ@S
and swapping the byte pairs and adding the other bits then gives us

HEX
CREATE+ B518 , 75Q00 , 9502 , BBO2 ,
7601 , 9603 , 4C03 , W@SEEC ,

SMUDGE
DECIMAL

