6G |
: 52 .
% Z > |
r & _
O

The TANBUG mondtor program is located in 1K bytes of read only
memory (ROM) at the top of the address space i.e. pages 252-255.
It containg facilities to enter, modify, run and debug programs.
This chapter of the manual gives 11l details of the command
faciliHes and subroutines available to the user.

TANBUG will only operate In the memory map of the microtan system,
it Is not a2 general purpose 6502 software package and has been
specifically written for microtan. Locations F7F7, F7F8 and F7FO
are veserved for a jump to an expansion monitor ROM which is
positioned on the expansion board, more about this later.

Locations 200-3FF i.e. pages 2 and 3 are the visual" display memory
— TANBUG writes to these locations whenever a command is typed to
the monitor. Locations BFFP-BFF3 are the addresses of the
peripheral attachmenis, e.g. keyhoard, graphics function flip-Tlop
etc. Locations 10¢-1FF i.e. page 1, are used as the stack by the
microprocessor. Since the stack is of the push down variety it
follows that the whole of the are will not be used as stack storage
in the majority of programs. TANBUG requires to use locations 1FH-
1FF as stack storage (only 16 locations). The rest of this area is
free for user programs. Locations 4@—FF are also available as user
RAM, the prececding locations @-3F being reserved for use by
TANBUG, User programs which do not use the stack may therefore
be loaded anywhere i.e. the area 49p-1EF. For user programs which
do use the stack, the user must calculate how many stack locations

are required and reduce the upper limit accordingly.

TANBUG contains coding to automatically identify whether the
keypad or full ASCIT keyhosrd is connected to the keyboard sccket.
This coding is executed every time a reset is iIssued, and there-
afler a sequence of code particular to the keyboard type in use is
executled. Reset must therefore always be issued after changing the
keyboard type.

When using an ASCII encoded alphanumeric keyboard monitor
commands are typed in as shown in this chapter. There is

however, no reset key on an ASCII keyboard, one must be fitted as
shown in the chapter deseribing assembly of the microtan kit.
TANBUG drives this type of keyboard in the interrupt mode.

The keypad is used somewhat differently, its layout being shown

below.,
DEL - 5P
SHIFT LT CR RST
| 6 $ i
D E T
p ESC B L
8 9 A B
i C R
4 6
0 1 2 3

TANBUG interrogates the keypad for a depressed key, then
translates the maftrix encoded signal into an ASCII character which
it puts up on the visual display just as if the equivalent key were
dépressed on an ASCII encoded keyboard. Because of the limited
number of keys it hag been necessary to incorporate a shift
function on-the keypad. So, to obtain the character P for example,'
the user presses and releases SHIFT, then depresses and releases P..
The SHIFT lfey containg a self cancelling facility — if the user .
pressecs SHII;“T twice in succession the pending shift operation is
cancelled, 5o as an example, using the two keys SHIFT and 8 the
operaﬁons:SIﬂFT P yields P on the display. GSHIFT SHIFT P yields
8§ on the display. Other special purpose keys on the keypad are
RST, which issues a reset to the microtan, and DEL which deletes
the last character typed. Repeated deletes erase characters back to
the beginning of the line. '

From now on in this chapter the microtan will be treated as having
‘one type of keyboard only, since all functions reduired can be
derived by depressing the appropriate key or keys on whatever is

used - keybeard or keypad.

Having described some of the background to TANBUG it is now

possible to describe the commands and syntax of TANBUG i.e. how to
use it. An example is shown later on. All numerical values of

address, data and monitor command 'arguments are in hexadecimal.
The symbol <CR> means on depression of the carriage return key,
<SP> the space key or bar, <ESC> the escape key (ALT on some
keyboards) and <LF> line feed. In all examples, text to be typed
by the user will be underlined, while TANBUG responses will not.
B indicates the cursor. <ADDR> means a hexadecimal address,
<ARG> means hexadecimal data.and <TERM> means one of the’
terminators <CR>, <SP>, <E3C> or <LAF>. .
Al commands are of the form
<COMMAND><TERM>

ar <COMMAND ><ARG><TERM >

or <COMMAND><ARG>, <ARG><TERM>.

or <COMMAND><ARG>, <ARG>, <ARG><TERM>
where <COMMAND> is one of the mnemonic commands and <ARG> is a
hexadecimal arghment applicable 1o the command being used. The
required argument is defined for each command. It should be noted
at an early stage that the longest argument s;:ill contain 4
hexadecimal characters, 1If more are typed all but the last 4 are
ignored. As an example consider the memory modify command
M12340478 <CR> In this case location f$78 will be modified or
examined as a1l but the last 4 characters are ignored.

<TERM> is one of the terminating characters <CR>, <SP>, <LF> or
<ESC>., In fact TANBUG accepts any of the "control' characters
(HEX code §-2¢) as terminator. TANBUG will reply with a ? if an
 Hlegal command is encountered.

Starting the monitor TANBUG:

Press the RST key on the keypad or the reset i{ey or button
connected to the microtan. TANBUG will scroll the display and
respond with

TANBUG

Note that on initial poﬁ:erAu;‘) the top part of the display will be
ﬁjled-yrith spurious characters, These wﬂl‘disappear as new
commands are ehtefed and the display scrolls up. On subsequent
regels the previous operations remain diéplayed to facilitate

debugging.

Memory modify/examine command M:

The M command allows the user ¥ enter and modify programs by
changing the RAM locations to the desired values. The command also
allows the user it inspect ROM. locations, modify regls‘cers e’c: To

open a location type the following
M <ADDR> <TERM »

TANBUG then replies with the current contents of that location. For
example to examine the contents of RAM location 1¢9 type MI1@P<CR>
TANBUG then responds on the display with ‘

Mg, ¢, B

assuming the current contents of the location were @E.

There are now several options open W the user, If any terminator
is typed the Iocation is closed and not altered and the cursor
moves 1o the next line scrolling up the display by one row. I
ho‘wever', a value is typed followed by one of the terminators <CR>,
<LF> or <ESC> the location is modified and then closed. For
example using <CR> | .

M199,0E, FX

H :
location 1 will now contain FF¥. If however <SP> is {yped, the
location is re-opened and unmodified.

M1p3,0E, FT

M1, P, B
This facility is useful if an erroneous value has been typed. The
terminators <LF> and <E3SC> modify the current location being
exanmined, then opens the next and previous locations respeciely
i.e. using <LF>

M16g, 0F, FF

M@1@1, AB,B
and using <E3C> '

M109,0E,

M@PrF,56,B
Using <LF> makes for very easy program entry, it only bemg
necessary o type the initial address of the program followed by its
data and <LF> , then responding i the curscr prompt for subse-

quent data words.

6-5

NOTE that locations §FE and |FF should not be modified. These are
the stack locations which contain the mondtor return addresses, I
they are corrupted TANBUG will almost certainly "crash” and it wili

be necessary 1o issue a reset in order o recover.

List command L.

The }Jst command allows the user to list out sections of'mem'ory onin
the display. Tt is possible to display the contents of a maximum
of one hundred and iwenty consecutlve memory locations simul-
tanecusly. To list a series of locations type ‘
L, <ADDR>, <NUMBER > <TERM>

where <ADDR> iz the address of the first location o be prmted and
<NUMBER > is the number of lines of eight consecutive locations 1o
‘pe printed. TANBUG pauses briefly between each line to allow the
user to scan them. For example, to list the first 16 locations of -
TANBUG (which resides at FCEP-FFFF) type LFC@@,2<dﬂ_>.
The display will then be

LECED, 2

FOPp A2 FF 9A E8 86 17 2 BY

FCge ¥F 8D F3 BF A2 ¢E BD DF

| d :

If zero lines are requested (i.e. <NUMBER> =.@) then 256 lines will

be given.

Go _com m_ar_}d G:

Having entered a program using the M command and verified it using
the L command the user can use the G command to start running his
own program, The command is of the format G <ADDR> <TERM>. For
example, to start a program whose first instruction is at location
149 type Gig@ <CR> When the user program is started the cursor
disappears. On a return to the monitor it re-appears. .

The G command automatically sets up. two of the microprocessors
intgrnal registers _
a) The program counter (PC) is set to the start address
given in the G command.
) The stack pointer (SP) is set to location IFF.
The contents of the other four internal registers, namely the status

o ey
o

E

.

6-6

. word (PSW), index X (IX), index Y (IY¥) and accumulator (A), are

taken from the monitor pseudo registers {described next). Thus the.
user can either set up the pseudo registers before typing the G
command, or use instructions within his/her program to manipulate

them directly.

Register modify/examine command R:

[ocatbons 15 to 1B within the RAM reserved for TANBUG are the user
pseudo registers. The user can set these locations prior W issuing
o G command, The values are then transferred to the micro-
processors internal registers immediately before the user program is
atarted. The pseudo register locations are aleoc used by ‘the monitor
to save the user internal register values when a breakpoint is '
encountered. These values are then transferred back into the
microprocessor vhen a P comm and iz issued, so that t all intents
and purposes the user program appears 0 be unintefrupted.

The R command allows the user to modify these registers in
conjunction with the M command. To modify/examine registers type
R <CR> and the following display will appsar {location 15
containing @9 say).

R

- M@, 08,8

Now proceed as for the M command.

Naturally the M command could be used to modify/examine location
15 without using the R command - the R comm and merely saving the
uger the need to remembsr and type in the start location of the
pseudo registers. Pseudo register locations are as follows.

Location : " Function
15 " Low order byte of program counter {PCL)
16 High order byle of program counter (PCH)
17 Processor status word (PSW)
18 , Stack pointer (SP)
19 Index X {(IX)
1A Index Y (IY)
1B Accumulator (A)

Two typical instances of the use of the R command are:-
a) Setting up PSW, IX, IY and A before starting a user

program.

6-7

b) Modifying reglsters after a breakpoint but before _
proceeding with program execution (using the P command) : '
for debugging purposes.

Note that when modifying registers in case (b) care must be taken
if PCL, PCH or SP are modified, since the procead command P uses
these to determine the address of the next instructions to be
executed (PCL, PCH) and the user stack pointer (5P).

Single instruction mode S:

Single instruction mode is a very powerful debuggi_ng aid. When ;

- set TANBUG executss the uger program one instruction at a time,
re-entering the monitor between each instruction and printing out
the status of all of the microprocessor's internal registers as they S
were after the last instruction executed in the user program. The
S8 command is used in conjunction with the proceed command P and I
the normal mode command N, Examples are given in the description

of the P command.

Normal mode command N:

The N command is the complement of the 5 command and is used to

cancel the 8 command so that the microprocessor execules the user

program in the normal manner without returning to the monitor

between each instruction. Reset automatically sets the normal mode

of operation.

Proceed command P:

The P command is used o instruct TANBUG to executs the next

instruction in the user program when in single instruction mode.

Pseudo register contents are transierred inte the microprocessors
internal registers and the next instruction in the users program is

executed. The monitor is then re-entered. P may also be used
with an argument thus P <NUMBER > <CR> where NUMBER is Jess than
or equal o FF. In this case the program execules the specified

number of instructions before returning to the monitor,

Each time the monitor is re-entered after execution of an instruction
or instructions, the status of the microprocessor internal registers

6-8

as they were in the user program are printed across the screen in

the following order:
Address of next instruction to be executed.

s et e 2 e e

; Processor status word.
: Stack pointer.
= ' Index register X.
Index register Y.
Accumulator.
Note that these are in the same order as thé peeudo regisiers

described earlier.

: Whenever the user program is entered, the cursor is removed from

v the display. Whenever the monitor is eptered, the cursor returns to

- the display as a user prompt. While in the monitor between user
instructions, any monitor command can be typed. A program must

ol ' always be started by the G command, then P used if in single

, instruction mode. A P command used before a G comﬁand is issued

is likely %o cause a program “crash ar‘ld.should not be atlempied.

" As an example cohsider the simple program which repeatedly adds 1
to the accumulator. ’

Address Data Mnemonic Comment
10 69 ADC 1 : add 1 to ace.
11 @1
142 4C JUP 100
1¢3 o
194 @1

Sel the single instruction mode and start the program. The user
may wish to initially seb the accumulator to @@ by using the M

command, N Co R
O s {1 el g e pObe BERTRRGAS

§ ;..g XY
g1g2 2p FF @9 0P @i

b TANBUG then responds with the characters shown above.

gige igs the address of the next instruction to be
executed, ’
20 is the processor status word wvalue.

¥F is the low byle value of the stack pointer. The
high byte is always set to 1, the stack is
‘therefore pointing at location 1FF.

is the value of the index X register.
is the value of the index Y register.

U
o3
@1

is the wvalue of the accumulator. It is a1l as 1
has been added t the accumulator and it is

assumed that the user cleared the accumulator beivre

gstarting the program.

Since the cursor has re-appeared, TANBUG is ready for any monitor

command. For example, registers or memory locations can be

modified, or the program may be pe~started from scratch by typing

CIgP<CR> again. If the user wishes o continue then type P<CR>.
The resulting display is
5

s
pige o TFF @¢f ¢f ¢L
P

g 2p FF @ 9P @1
, &

Since the instruction abt location 1f2 was "Jﬁmp to 1¢gY, the status
print out shows that this has indeed occurred. Registers, since
they were not modﬁﬁed by any program instruction, remsain
unchanged. To proceed further type P<CR> again.

S

c1gp
pige 2¢ FF OO o B
P

figp op FF g9 9 @

P

@gige °@ FF @9 @96 @2

[
The add instruction has been executed again, so the accumulator
has incremented by 1 to become 2. Now typing P4A<CR> gives a
display.

3

c1gp
gige 2¢ FF
P

gigp 29 FF
P

gigz 29 FF
P4 :
g °p FF

S

@1
'y

ng

g8 &8 ® =¥

& 8 8 s

P4

s = :

6-10

TANBUG allowed execution of 4 instructions before again returning
to the monitor. The 4 instructions were 2 add instructions and 2
Jump instructions thus giving the accumulator the value 4.

By typing N<CR> then P<CR~> removes the single instruction

mode and causes the program to proceed. Tt now does not return
o the monitor but continues W race .avound this small program
loop continually addlng and jumping back. There is no way w
exit from this tr'lvaal program except by a microprocessor. reset- or,
if using an alphanumeric keyboard, by typing ESC,

Tt can be seen that the S8 and P commands are parﬁcularly ugeful
when tracing a program which contains instructions that trangfer
program control e.g. jumps, branches and subroutines, since these
commands allow the user to interrogate the or‘der of execution of

his/her program.

Breakpoint command B:

A breakpoint is a complementary debugging aid to single
instructon mode. Instead of stepping singly through all
instructions in a program, the breakpoint facility allows the user
to specify the address at which he requires the monitor to be
re-enigred from his/her program. AS an example, consider a long
program in which a fault is suspected to exist near the end. It
would be very tedious and time consuming to single step through
the program t the problem area. A breakpoint can he set just
previous to where the fault is suspected to exist and the program
started with the G command., Normal execution occurs until the
breakpoint ig reached, then the monitor is re-entered with the

‘same status print-out as for single instruction mode. Any monitor

commands can then be used and the program continued.

The format of the breakpolnt command is

' B <ADDR>, <NUMBER> <CR>
where <ADDR> is the address of any instruction OPCODE (but not
argument), <NUMBER> Is any number -from @7 defining one of 8
breakpoinis, B CR removes all breakpoints. As an example

consider the following program

6-11

109 E8 LOOP: INX

11 C8 INY

1We 69 Pl ADC#L
194 4¢ o @ JMP LOOP

Firstly set index X, index Y and the accumulator o @f
using the R command.
and start the program type Bl¢4,@<CR>. The
display will then be

B1§4,0

G1¢g

giga 3¢9 FF @1 g1 @l

B
The jump Instruction wag reached and the breakpoint re-directed
control back to TANBUG.
mode could be set for further debugging.
we wish to execule the lcop ageain by typing P<CR>.

B1@4, ¢

g@ .
g9 W FF f1 ¢1 @1
P A

gigs 8¢ FF @2 @2 @2

|
The proceed command P has gone once through the breakpoint and
then re-entered the monitor. If P<NUMBER><CR> was typed it
would have proceeded through thé breakpoint < NUMBER> times.

If it were required, single instruction
However, assume that

Up t 8 breakpoints can be set at 8 different locations. The B<CR>
command removes all breakpoints. A single breakpoint can be
removed by setting its address t 9.
breakpoint is set as follows; B1@2,2, and it is subsequently

wished 1o remove it but leave any others unaltered; type Bg,2<CR>

For example, imagine a

to remove it.

Caution. The breakpoint system works by replacing the users
instruction with a specisl instruction (BRK) whose opcode is G0N
Replacement is carried out when G or P is typed. On return to
the monitor the original opcode is repleced. It is therefore
possible to corrupt the user program under some circumstances.u
The following points should thercfore be observed: _
a) Breakpoinits must only be set at the opcode part of a

Cuser instruchHon and nowhere else,

To set breakpoint @ at the jump instructlon

6-12

b) If the user program utilises the BRK instruction
as part of the user code, then the user must have his
own speciél interrupt routine and cannot use break—

points,

¢) If breakpoints are sel in the user program and a
reset g issued whils the microprocessor is executing
the user program rather than the monitor, the break-

points are lost and those locations al which break-
points were set in the user program will be corrupted.
These locations must be re-enitsred using the M
command before restarting the user program.

d) Setting more than one breakpoint at the same address

causes the user program to be ctorrupted.

e} To use breakpoints, the user must not have modified
the interrupt link, i.e. the interrupt code within
TANBUG must be executed.

The status of.breakpoints may be inspected by uging the M command

_ o examine the breakpoint status table, This is located in RAM

:P locations 2@-2F and are as follows: '

i Address Contents

: o PCL BJ
21 PCH B@
22 PCL Bl
23 PCH Bl
24 PCL B2
25 " PCH B2
26 _ PCL B3
27 PCH B3
28 PCL B4
29 PCH B4
2A FCL Bb
2B PCH B5 .
2C PCL BS
2D PCH B6
2E PCL B7
2F - PCH B7

. For example, typing M2@<CR> followed by <LF> gives
‘M2p, 08,
M¢¢21,®1,§

This indicates that breakpoint ¢ is set o location 1% by taking

the contents of location 2§ as PCL and of location 21 as'PCH. 1If
the breakpoint is set at location @ then this particular breakpoint

iz disabled.

Offset command O:

The offset command O is a program writing eid. It calculates
branch offsets for the user for incorporation as arguments in

branch instructions. Consider the example:—

19¢ E8 LOOP: INX
g1 C8 INY

1¢2 69 ADC#1

193 ¢t

12¢ g BNE LOOP

121 {branch argument)

To calculate the number to enter into location 121 is quite tedious
without a facility such as the O command. 1t is used with the

following format.
O<ADDR. OF BRANCH OPCODE ><ADDR. OF DEST.><CR>

and in this case it would. be necessary o type o12¢, 1¢@#<CR>. The
display would be
Q12,109 =

: B
DE is the number that should be en_tered into location 121 such that

if the BNE instruction is true the program counter will jump o the
label LOOF,

Note that the maximum branch range is 7F forwards and backw ards.

If the range is exceeded a ? is displayed.

Copy command C:

The copy command allows copying of the contents of one block of

memory to another. Its format is

C<START ADDR. SOURCE><END ADDR. SOURCE><START ADDR. DEST.”
Suppose it is required to copy the block of data in locations FCPP-
FD@$ into a block starting at location of, This may be achieved
by typing CFC@g, FDPP,2¢¢<CR>. The display will be

BTN

- Lt
T e e e

6-14

CEFCPP, FDPB, 200

As 20 is the starting address of the display memory the user will
notice that the top half of~the sereen has been over written with
all sorts of weird and wonderful characters. What this example
has done is to take the first 256 bytes of TANBUG and copy them
into the top haif of the display, The display then scrolled having

the top 7 rows filled with these characters.

Breakpoints and the ESC key

1f an alphanumeric keyboard is being used, depression of the ESC
key (ALT on .some keyboards) will cause a re-entry into the

monitor from the user program. This is possible because the alpha-
numeric keyboard is interrupt driven. For example, if the trivial

program : .
' 196 69 ' LOOP: ADCH#L
161 @1 -
g2 4c JUP LOOP
1033 ¢ ’
14 @1

has been started by typing the G command the program continues o
loop around continucusly with no exit path to the 'monitor? except
by issuing a reset. Instead of a reset the user can press the ESC
key, TANBUG responding thus) ’ '

g o9 FF L Pl @1

8)
Using the ESC key has caused a breakpoint . be executed and the
monitor invoked. The register print~out above iz only typical, the
value of each being that when the ESC was depressed. Any monitor
command may now be typed, for example P causes the user program

to proceed crnce again.

The ESC facility is most useful in debugging where the user

program gets into an unforseen lcop where breakpoints have not

been sst. It enables the user to rejoin the monitor without using

reset and losing the breakpoints that have been set. '

Notes: a) The ESC facility is only implemented on interrupt
driven keyboards i.e. alphanumeric ASCII keyboards,

and is not implemented on the keypad.
b} Interrupts must be enabled for the ESC facility to

6-16

operateA. TANBUG enables interrupts when entering a
user program, therefore do not disable interrupts if
the ESC facility is required.

¢) The user must not have modified the imterrupt jump
Hnk, TANBUG's intfarrupt code must be exccuted.

USER SUBROUTINES

Certain input/output subroutines rare available to the user. Since
these rely on a standard display format, this will be described
first, followed by the user subrouline descriptions. .

Display format

TANBUG uses the bottom line of the display for all text operations.
Initially the cursor is at the left hand edge of the screen, and
moves gradually 1 the right as a line is filled. When either a

carriage return is output, or the bottom line overflows, the display
is serolled (all lines shift up ons row) and the bottom line becomes

available for more output. Therefore the cursor always remains on
the botiom line. However, there is no reason why users shouldl
restrict themselves to this mode of operation unless they intend to
use TANBUG's subroutines to control the display in their own
programs. It should be noted that the display memory is read/
write memory and may be used as a character buffer prior to
processing thus saving RAM locations for a user program.

Subroutine POLLKB

Subroutine POLLKB is used to interrogate the keyboard for a typed
key. (Appropriate software for the type of keyboard in use is

automatically set-up by TANBUG when a reset is iIssued). On exit
from the subroutmé the RAM location labelled ICHAR {address ¢¢@l)

contains the ASCII code of the character typed, whether it is typed

on the keypad or on an alphanumeric keyboard. When using the
alphanumeric keyboard, interrupts must be in the enabled state.
As an example consider the user code

6-16

1) CLI - 3 enable interrupis
2) JSR POLLKB -3 poll the keyboard
3) LDA ICHAR .3 load acc. with character

The sequence of operations here are
-1} Enable interrupts so that alphanumeric keyboard may
be interrogated. ’ '
2} The progeam loops around within the POLLKB sub-

routine until a key 18 pressed.
3) The program exits from POLLKB with the ASCII code
for the key pressed in the location labelled TCHAR.
The accumulator is loaded with this value.
[Notes: Address of subroutine POLLKB is FDFA. Address of ICHAR is
" ‘ @@L, The registers IX, IY and A are corrupted, therefb're the user
must save and restore their values if necessary.

: . Subroutine QUTPCR

ARt

This subroutine causes the display to scroll up oﬁe line by out-
putting a carriage return to it. It also re-instates the cursor,
which is switched off when a user program is started. This sub-
routine should be ca_lle-d in a user program prior o any display
input or output t clear the bottom line. .
Notes: Address of subroutine OUTPCR is FE73. Registers IX and IV
are unaffecied. Register A is corrupted and must be -savejd it

required.

Subroutine OPCHR

This subroutine is called to output a character held in the
accumulatof, to the display. The cursor, obliterated on a user
program start, is re-instated. As an example, consider the code

*

LDA#3¢

JSR OPCHR
LDA#3L:
JSR OPCHR

.

Since 3¢ is the ASCII code for the character "@" and 31 is the
_ASCII code for the character "1, the result {assuming this is the’

first call to this .subroutine) on the bottom line of the display 1s

. B
Repetitive calls of OPCHR will fill the bottom Yine of the display
‘with the appropriate characters. When the end of the line is
reached, OPCHR scrolls the display up one line and then writes
characters in the newly vacated bottom line and so on.
Notes: Address of subroutine OPCHR is FE75. Registers IX and IY
are unaltered. Register A is corrupted and must be saved if

required,

- Subroutine HEXPNT

‘Subroutine HEXPNT takes a binary value from the accumulator and
- outputs it as two hexadecimal characters on the display. Consgilder
.the code '

FHA ‘ ;7 save A on stack
J3R OUTPCR © 3 . scroll display
PLA 1 recover A

JSR HEXPNT . : output A in hex
JoR ’OUTPCR , 1 scroll display

 This code will display the contents of the accumulator as two hex
‘characters. For example if the accumulator contained the value 2C

the resulting display would be
2C

B
Notes: Address of subroutine HEXPNT is FFPB. Register 1Y is-

unaltered. Registers IX and A are corrupted and must be savedl if

required.

Subroutine HEXPCK

This subroutine reads hex characters from the bothom line of the
display - and packs them up into two gight bit binary wvalues,

6-18

enabling a sixteen blt word to be assembled. It is useful for
incorporation into programs which require numerio.al keyboard input.
Usually POLLXB is- used 1n conjunction with OPCHR 1o enter data to
the display, then HEXPCK called when a carriage return is
encounttered. The following user code could be used to do this

+

JSR OQUTPCR s scroll display
NXTCHR: JSR POLLKB s wait for character
LDA ICHAR 1 put it In A
CHP# 0D ; carriage return ?
- BEQ GOPACK ; yes, pak It
JSR OPCHR ; else gtore in display ;
JMP NXTCHR ; get next character :
1) CGOPACK: LDY# §F ; set IY i first char,
2) JSR HEXPCK ; pack it

3)

In this example the subroutine is used in the following way:

1)} Set IY with the charscter position at which -
packing is to start. The left most location of the
bottom line corrosponds to setting 1Y o ¥F The
next locéi-ioﬁ corresponds to IY equal o @i eto.

2) Call HEXPCK. Characters are packed untii a
character other that 0-9 or A-F is encountered; an

exit then occurs.
3) Continue into the user code where the values of

HXPKL and HXPKH will be read.

For example, packing 1 CR gives HXPKL = 1 and HEXPKH = 0. Packing

FEDC CR gives HEXPKL = DC and HEXPKH = DC. Packing FEDCBA

CR gives HXPKL = BA and HEXPKH = DC, ie if more than four

hexadecimal characters in succession are encountered then the last four

are packed. Additionally, flags in the processor status word (PSW) are

used to indicate exit conditions. The overflow flag V is set if the first

character is a valid hexadecimal character, otherwise it is clear. The zero
Z and carry C flags are clear if a non-hexadecimal character is |
encountered, otherwise they are set. The Y index register holds the

number of characters encountered.

+

Notes: Address of subroutine HEXPCK is FF28. Address of HXPKL is

is @13 and HXPKH is #¢i4. Registers IX, IY and A are all
corrupted and must be saved if necessary.

INTERRUPTS

TANBUG uses both the maskable and non-maskable interrupbs. How-
ever, means have been provided W access the interrupts via both
hardware and software. Of necessity user interruplts may, in some

cases, place restrictions on certain monitor commands,

The maskable interrupt

When TANBUG 1is initialised by a reset, certain RAM locations are
get up to Link through the interrupts for monitor use. These
jocations are labelled INTFSL, INTFS2, INTFS3 and INTSLi. When a
maskable interrupt occurs, the following sequence of events is
obeyed (assuming the RAM locations menkdoned above have not been
modiﬁed).

a) The program jumps to INTFSL in RAM.

b) The locations INTFS1, INTFS2 and INTFS3 contain
the instruction JMP KBINT. The program therefore
jumps to KBINT which resldes in the monitor ROM.

¢) The monitor software looks see what caused the . .
interrupt. If a BRK instruction, then the break-
point code is executed, If a keyboard interrupt,
jocation ICHAR is updated with the new ASCIT
character which is read from the keyboard I/0
port.

d) TIf the interrupt is caused by anything other than

" & BRK instruction then the monitor jumps to
location INTSLIL.

e) DNormally INTSL1 containg an RTL instruction - the
program would then return t where it was
interrupted. : s,

Tt can therefore ‘be seen that the user card implement his/her own
interrupt service routines in two ways. '
. 1) A fast interrupt response by modifying the -

' locations INTFSL, INTFS2 and INTFS3 to jump o the
user interrupt service code. In this case break-
points and the'ESC command cannot be used unless
the ucer program jumps back to the monitor gervice

820

routine ‘a:t‘ter- execuling its own code.
5} A slower interrupt response by modifying INTSLL,
| INTSI2 and INTSL3 to jump to user service routine,
-after executing the monitor service routine. The
RAM locations INTSLL, INTSL2 and INTSL3 would be
modified to contain the instruction JMP USER. This

method places no restrictions on monitor commands.

A number of things should be noted when using m”terrupts
a) An RTL instruction must always occur at the end of
user code to return the program to the point at
which it was interrupted, unless the user code
jumps back to the moniltor gervice routine.
b) If a reset it issued, the INTFS and INTSL locations
are seb back to their monitor values by TANBUG,

and the user has to reset them. ,
¢) If any microprocessor internal registers are used
in the user interrupt service routdne, they must be
»saved before mogdification ard restored before the
RTT instruciion, i.e. on return to the monitor the
registers IX, IY and A must contain the same '
values as they had on enfry to the user routines.
d) The interrupt jump locations should be modified by
 instructons in the user program abt run time and
not by the use of the M command, Thié iz because
TANBUG software uses Kkeyboard interrupts. If
using an alternative link at INTFSL, no break-
points can be set. '
¢) Addresses of RAM locations are; INTFSL = (¢p4,
INTFS2 PoEs, INTFS3 = @6, INTSLL = oo1@,
INTSL2 = @11, INTSL3 = @jie.

i

]

The non-maskable interrupt

The rion-maskable interrupt vector is accessed in the same way a3
explained for the maskable interrupt. The user can obtga.in access
by modifying locations NMIJP, NMIJPL and NMIJP2. Note that single
instruction mode will be inoperative and that breakpoints will be
destructive, i.e. they are destroyed when they have besen executed
once and replaced with the original code. Addresses of RAM
locations are; NMIJP = @@¢7, NMIJPL = (@8 and NMIJP2 = @@@S.

6-21

ERROR LINKING

It will be noted that TANBUG displays a question mark whenever an .
Megal command is typed. 1In order to allow fubure expansion of
the monitor, an error link % memory external o the monitor ROM's,

is incorporated.

When an error cccurs the fhllowing sequence of events is inttiated:

a) The program jumps to F7F7.

b) With no expansion board (TANEX) present the
address F7F7 (ouismide TANBUG space) is decoded as
address FFE7 (inside TANBUG space).

¢) A question mark is printed.

With TANEX present, a special link is ingorporated to return the
program to the monitor. The user may remove this link and insert
an EPROM in the position which includes the address F7F7
containing the code JMP USERCODE at address F/F7, where USERCODE
may conbain software o deal with any ex*cré commands the user
wishes 1o add to the monitor. Note tlr{ét this facility will be used
by future TANGERINE éoftia.rare.

There are two methods of returning to the mqp},t’ﬁi‘ from external
code: !

1) The instruction RTS at the end of the user code
returns to the monitor, gives a carriage return
then continues looking for commands.

2} The instruction JMP FFF7 returns to the monitor,
giving a question mark on the display.

EXAMPLE OF TANBUG's USE

The following, simple example program clears the screen by calling
OUTPCR F times, then slowly fills the screen with asterisks. It is
used a8 an example to demonstrate the use of some of TANBUG's
commands. Deliberate errors are later written into the program o
demonstrate TANBUG!'s fault i‘iﬁdr’mg capabilities.

The first step in writing a program is to produce a flowchart of
program execution, The second step is to write the program :in
assembly language code using the instruction mnemonics. The third

6-22

step is to look up and write the op-codes and argufnents for each
insteuction. At this stage the branch code argumen’cs.w:‘_’ll be left
blank and TANBUG's O command used.

i i

The - flowchart .and program Iisting now follows.

Start

: Set index to E

tall OUTPCR

Decrement index

Obliterate cursor

! o Initialise
B display index

Gutput * L

Delay

Incrémen’t
display index

ANo

Display full?

Yes

Return te moniter

- @peg
@po2
HD54
PPH57
istes
FPsA
HsC
PP5F
@pel
Pp63
101 1315)
67
@69
Pp6B
@PeD
PPEF
pP71
gp72
Pp74
P75
o@77
gp78
FD7A
pp7¢
GP7E
Ppep
¢gaz
ppaa
@dae
@88
BPsA

o0
@F
73 FE

(arg 1) .

%3

2 ES8

(arg 5)

FF
(arg 6)

6-23

Example program listing

VDUIND: ¢ ;dispiay index
START: LDY# ¥ iget Y dindex
SCRAG: JSR QUTPCR icarriage return
DEY :do E times
BPI, SCRAG
LDA# 2¢ 1load A ascii spéace -
STA 3ED :obliterate cursor
LDA# © :set display index’
STA VDUIND '
LDA# 2
STA VDUIND+1
CONT: LDY# § sclear Y index
LDA# 2A ;sel ascii *
sTA (VDUIND),Y
LDE# F jdelay 1oop
LDY# FF
DECIT: DEY
BNE DECIT
DEX
BNE DECIT
CLC ;inc display index
INGC VDUIND
BNE WOMSB
INC VDUIND+1
NOMSB: LDA VDUIND+1 ;top of display?
CMP# 3
BNE CONT ino - contdnue
LDA VDUIND
CMP# FF
BNE CONT :double prec. Cmp..
BRK jreturn o monitor

TR

6-24

Program entry is performed using the M command. For the time
being set the branch arguments (arg 1 - arg 6) to @¥f, these can be
altered when calculated, using the 0 command.

Once the program is entered the pbranch offsets are calculabed The
first 18 arg 1 which has an opcode address of ¢@s8 and branches to
the label SCRAG at location (@54. By typing 058,54<CR> TANBUG
prints out the value of arg 1 as FA. This may now be placed in
location @@59 using the M command. BY repeating the exercise for
the other five arguments it will be found that location @@73 should
contain FD, @@#76 should contain FA, ¢@#78 should contain @2, 7983
should contain E3 and (@89 should contain DD. ‘

The program will now run -if it has been entered correctly. ~To
start the program type GB2<CR> since the first instruction of the
program is at location @¢¢52, When the screen is full of asterisks
the program exits o the mornitor. Alternatively, if an alphanumeric
keyboard is being used, depression of the ESC key causes an exit
o the monitor. If the program does not run correctly then it may
be necessary to issue a reset in order to regain control. The
program can be listed by typing 150,8<CR> ylelding a display of

158,8

Gosp op ¢ AP OF o9 73 FE 88

@gfss 1 FA A3 20 8D B @3 A9
ddep ¢p 85 5P A9 g2 85 5L AP
@@68@@A92A915¢A2¢FA¢

gp7¢ FF 88 DP FD CA Dg FA 18

gg7e E6 BP DY @2 E6 5L A5 5L

dfep €9 ¢3 Dp E3 A5 ©&p C9 FF

gfes DP DD PP XX XX XX XX XX

B .
providing the program has been correctly entered (XX indicateg any
value as these locations are not part of the program) If the
program failed to run carefully check the listing firom the L
command with the program listing and correct any errors ‘with the M

command.

Having got the program working it is now posgible to-introduce a
deliberate error to demonstrate the use of preakpoints and the
single instruction mode. ~ The error o be introduced is to put the
wrong vealue for the branch argument on the first occurrence of the

instructdon BNE DECIT; instead of jocation 73 containing FD change
it to FB. Now the register 1Y will never be zero and the program

will loop here.

If the program is sterted now ‘only one asterisk

will be printed and then nothing else will happermn. Debugging

steps are as follows:

a)
b)

c)

a)
e)

)

g)

Regain control to the monitor by wsuing a reset.
The first part of the program is being executed
correctly as the display scrolls, Furthermore, it
is at least getting to location 6B because an
asterisk is printed. Tt would be very tedious o
single instruction this far from the beginning
because the OUTPCR routine is called sixteen times.
Therefore set a breakpoint at location 6D by typing
B6D,B<CR>. .
Start the program again by typing G52<CR>. The
display scrolls and the status message

ﬁ@g@é 31" FF ¢F ¢ 2A

g !

is displayed. Conirol is now back in the monitor.
Set single instruction mode by typing S<CR>.
Repeatedly typing P<CR> causes single mstructtons
to be executed followed by a status print~-out. The

following sequence of instructons will be observed.

¢geF 21 FF @F ¢¢ 2h
@¢g7i AL FF @F FF 2A
g@g7e Al FF ¢F FE 2A
greF Al FF @F FE 2A

Now if the code were correct the program could not
go back to location 6F. In fact, since IY is
shown to be FE, the program ghould have Jumped
pack o location 71. The branch instruction is
probably at fault, therefore examine it and its
argument using the M command,

M72, 00,

M@p73, 8,8
The valuve in location 73 should be FD, therefore
change it by typing FD<CR>.

Remove single instruction mode and breakpoints by -

typing N<CR> then B<CR>.
Restart the program by typing G52<CR> The
program should now run correctly,

3
e
i

E-.

PSR S S R s AL AP

6-26

Note that when using an alphanumeric keyhoard,. debugging is
slightly easier. When the program sticks in a loop ESC can be
used to return to the monitor (provided interrupts have not been

disabled). Single instruction mode can then be .set to determine :

the loop in which the program was running.

i

@@
@1

o2
@3
¢4
75
@6
@7
@8
@9

PA
?B
@#C
@D
1
oF
19

11

12

13 l.:. -

14
15
16
17
18
19
1A
1B
1C
iD
1E
iF

TABLE OF HEX ASCII. CODES -

NUL

Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control

" Control

Control
Control
Control
Control

"+ Control

Confxrol
Control
Control
Control
Control
Control
Control
Conirol
51

82

53
24
S5

A
B
c
D
E
T
G
H
1

J

K
L
M
N
0
2
Q@
R
<
P
]
g
W
X
Y
z

Home

Bell

Backspace . .
Horizontal Tab - Cursor Right
Line Feed -

pPage Clear - Form Feed
Carriage Return

@

Vertical Tab — Cursor Up .:

Fee

Note that the codes @¥ - LF produce special symbols when used

in display memory.

62

TABLE OF HEX ASCII CODES (CONTINUED)

o

Space

29
21

61

41

62

42

22
23

£ or #

24
25
26
27

- B5

45

%

66
© 67

47

68
69

28
29

49

6A
6B
6C
6D
6F
6F
70
71
.72

4A
4B

2A
. 2B

40
4D

2¢
2D
PE
2F
3¢
31

4K

4T 7

51

52

32
33
34
35

73
74
75

53

54
55
56
57
58
59

76
77

36
37
38
39

W

78
79
7A
7B
7C
7D

5A
5B

3A
3B
3C
3D
as
3F

5C
5D
5E
5F

t

~

7E

E or Rubout

7F¥

